
ITCS 2214 Project 4a: Binary Search Tree ADT(Earthquake Data) Fall 2014

Due Nov. ??,

This project will use the BRIDGES binary tree API with the Earthquake data that will be retrieved
from a source viat Twitter. Instead of the interface from the textbook, you will use an equivalent
interface from BRIDGES for binary search tree operations.

The BRIDGES API is accessible from http://bridgesuncc.github.io/doc/api/0.99.0/

Dataset:

We will be continue to use tweets of earthquakes as part of this project. The actual tweets will be
accessed by BRIDGES from https://twitter.com/earthquake. Each tweet contains the quake
magnitude, location, date and time. Utilities will be provided to access some of these attributes
for use in the tasks described below.

This project will consist of 2 parts: the goal of the first part is to a good and deep understanding
of the binary search tree ADT implementation. As such, the task is to embed attribute calls from
BRIDGES to highlight aspects of the basic algorithms on binary search trees.

Project Tasks:

1. BST ADT: BRIDGES provides the basic algorithms to insert, delete and find elements in
a binary search tree. By default, all elements have specific attributes for color, opacity, and
size.

Go through the implementation of the TreeVisualizer(in TreeVisualizer.java) that implements
the binary search tree algorithms(these follow from the text with some modifications). Once
you understand this class, create a subclass of Visualizer (similar to TreeVisualizer). This
will contain the exact same methods, but now these will be modified to include attribute calls
to highlight certain aspects of the search tree algorithms.

Output: Insert at least 50 earthquake tweets into a binary search tree; use the magnitude
as the search key and to size the node (similar to project 2). Generate the visualization.

2. Insert(): You will modify the insert() method, so as to display the path traced out by the
insert() function. Use a single color to highlight the relevant nodes and paths, while using a
unique color for the newly inserted node. Output: Insert 40 earthquake tweets into a binary
search tree; use the magnitude as the search key. Generate the visualization. Demonstrate
your modified insertion algorithm by inserting the next 3 tweets into the tree and calling the
update() method after each insertion. Your 3 visualizations should show the paths traced out
by the insertion and the inserted node. You can use the default BRIDGES insert() method
to generate the initial tree (in default color) or adapt your implementation.

3. Find(): Repeat part 2 for the find() algorithm; you will generate 4 visualizations similar to
(2). In this case, the element found will be highlighted in a unique color. In case the tweet
is not found, only the path is highlighted. Similar to (2), create the default tree and then
choose 3 elements within the tree to search for and output the results. Also test one value of
the magnitude that does not exist in the tree.

Output: Similar to (2), you will generate 5 visualizations, 1 for the default tree, 3 for values
found in the tree and 1 for a nonexistent quake.

October 21, 2014 1 K.R.Subramanian



ITCS 2214 Project 4a: Binary Search Tree ADT(Earthquake Data) Fall 2014

4. Remove() Since the node is removed from the tree, you will create before and after snapshots
of the tree: (1) once the node to be deleted is found, show the path and the node distinctly(as
in the insert() case); once the deletion is complete, show the final tree(for the 2 children case,
you can also highlight the path to the replacement node, which will ultimately be removed
and will not show in the final tree).

Output: Similar to (2), you will do three cases: removing a leaf node, removing a node with
1 child, and removing the root node of the tree. You will generate two visualizations (before
and after) for each case. Start with a large enough tree and pick suitable values to delete (the
last case will remove the root node).

A simple tree driver will be provided that will illustrate basic tree operations.

Saving Output.

You can save your output by selecting unique assignment ids, as part of the Bridge.init() call.
Each update() call will save the output within this assignment id. If assignment id is 7, then
7.0, 7.01, 7.02... will be part of the links generated to save the visualization(needed in part
2).

Evaluation:

Save all your output in a set of unique links. Once the output is saved, you should not
overwrite those pages until grading is completed. Turn in all of your source codes and the
output links to Moodle.

October 21, 2014 2 K.R.Subramanian


