
ITCS 2215 Project 1-2: Graph Alg.:Dijkstra’s Shortest Path Fall 2016

Due Nov. 27, 11.59pm

In the second part of this project, you will implement the Dijkstra’s classic shortest path algorithm
and visually illustrate these paths on a city-city distance network, that will be provided. Similar
to the first part, the project will use BRIDGES to display the transportation network.

As before you will read in the dataset and build/visualize the graph. The dataset provides loca-
tions as X,Y coordinates. The ElementVisualizer class contains a location attribute (setLocation())
that can be used to assign the location of the element.

Dijkstra’s Shortest Path Algorithm. Generally Dijkstra’s algorithm requires a heap to effi-
ciently find the minimum cost edge, but we will dispense with that to reduce the complexity of the
algorithm. The attached handout (pdf document along with this assignment) provides a description
of this implementation. Follow this algorithm.
Requirements.

1. Implement Dijkstra’s shortest path algorithm.

2. Test your algorithm on the given dataset and generate a visualization with the locations of
the nodes specified by the data file. Use the setLocation() method of the ElementVisualizer
class to set node locations. The edges have weights. Come up with a scheme to map the
weights of the edges to their thickness (use the setThickness() method of the linkVisualizer
class).

3. Shortest Path. A user must be able to specify a start node name and end node name
and your algorithm should highight the shortest path on the graph. To highlight the path,
you should keep track of the parents of each node in the path to the source node. Thus, to
highlight the links on the shortest path, once the algorithm finishes, follow the parents of
each node (starting from the end node on the path, until the source is reached(source has no
parent), highlighting each of the links.

Implementation Details. As described in the handout, you will need to maintain a Mark array
that keeps track of the visited nodes, and a distance array to keep the shortest distances. To
determine the path, you also need a parent array. Since our node names are strings, use
Hashmaps for these 3 arrays, for constant time access.

Dataset:

We will use city-distance dataset of 128 cities and distances between them. This will be provided
as a text file.

Submission Requirements.

Turn in your source code to Canvas by the deadline; ensure it is well documented. An interactive
demo will be required for evaluation.

November 15, 2016 1 K.R.Subramanian


