
1  

  Assignment 4 -­­  Lists & Recursion   
 
 

This assignment has two parts; the first part covers lists where the goal is to construct 
and visualize a new Singly Linked List implementation using Bridges SLelements 
instead of Linked Node objects. The second part covers recursion in which you will be 
asked to design four recursive functions. 

 

 
 

Part I 

Overview 

The primary goals of this program are as follows: 
(1) Understand how the methods in the SLList class work.  

(2) Create a Tester class to demonstrate the Singly Linked List data structure.  Assign 
visual properties to the elements of the List. 

 
The Tester should create an instance of the Singly Linked List class. The list will store a 
sequence of integers. The list should be visualized a number of times as elements are added 
to it, and each set of new elements should feature different visual properties. Visualizing the 
data structure and adding visual properties to list elements can be accomplished easily with 
the Bridges API. See the Tasks section for specific details and instructions. 

 

 
 

Tasks 
 

Follow the instructions on this website to add the Bridges library to BlueJ: 

http://bridgesuncc.github.io/bridges_setup_java_bluej.html 

 
Create a project named Training in BlueJ and re-create this example: 

http://bridgesuncc.github.io/Hello_World_Tutorials/SLL.html 
 
 

Documentation for Bridges classes can be found at the following link: 
http://bridgesuncc.github.io/doc/java-api/current/html/index.html 

http://bridgesuncc.github.io/bridges_setup_java_bluej.html
http://bridgesuncc.github.io/Hello_World_Tutorials/SLL.html
http://bridgesuncc.github.io/doc/java-api/current/html/index.html


2  

Singly Linked List Assignment– 
-‐‐  Create a subclass ListOperastions for the SLList class with the following functions: 

                     
         - findRightPlaceAndInsert(element): Boolean - this method finds the right place for 

the element based on chronological order then add the object to the list at that place. The 
method returns true when the object is added to the list successfully.  

         - findAndHighlight (element): true -  this method returns true if the element is in 
the list. The method changes the size and color of the node holding that element.    

       - updateLabel method that sets the label equal to the new element’s value 
       - create methods to change the current element’s color,  size,  shape,  and  opacity.  
 These are all supported with Bridges methods accessible through SLelement’s  
 getVisualizer method. Since the driver won’t have direct access to the list’s current  
 SLelement, you need to call these respective Bridges methods from the  
 ListOperations class using arguments passed from the driver. 

 

---- note: remember to import bridges.base.SLelement library to the ListOperations 
subclass so you can use the SLelement’s getVisualizer method(s). 
 

 
Tester – 

-‐‐ Create  a  Tester  class  with  a  main  method 
-‐‐ Import  bridges.connect.Bridges  to  allow  you  to  create  a  Bridges  object 
-‐‐ Initialize a Bridges object with the assignment number, your username, and 

your  API  key.  (See  the  Bridges  template  on  Moodle  for details) 
-‐‐ Create an instance  of your SLList class and  parameterize it to hold  Integers 
-‐‐ Add  100  new  elements  to  your  SLList.  The  elements  should  simply  contain  the 

index  of  whichever  loop  construct  you  use,  and  should  be  inserted  in  increasing 
order (from 0 to 99) 

-‐‐ Every  successive  set  of  25  elements  should  have  different  visual  properties  from 
the other 75. You are free to use whichever attributes you like: 

o color can be set to any css or RGB color  
o opacity can be set between 0 and 1 (note: to change opacity, color has to be 

set first). 
o size can be set between 1 and 50 
o shape can be set from among the following options: [square, diamond, 

triangle-•‐down, cross, triangle-•‐up, circle] 
-‐‐ After every successive set of 25 elements  are added to the  list, call Bridges’ 

setDataStructure  method  passing  in  the  head  of  your  list  and  then  call  Bridges’ 
visualize   method 

---   Allow the user to add a new element to the list  

---    Allow the user to search and element in the list, highlight that element wen found.  
 

Deliverables – 

 
The final Bridges assignment your program should generate will be something like this: 



3  

 
 

Scoring Rubric 
 
 
 

Tester: 90 points 
-‐‐ Up  to  10  points  for  appropriate  documentation  and  comments 
-‐‐ Up to 10 points for correctly adding 100 elements to the list in increasing order 
-‐‐ Up to 10 points for setting the labels for all the added elements 
-‐‐ Up to 20 points for setting new distinct visual properties for each new set of 25 

elements 
-‐‐ Up to 20 points for visualizing the data structure after each set of 25 elements are 

added (you will generate a total of 4 visualizations with 25, 50, 75, and 100 
elements, respectively) 

---    Up to 10 points for allowing the user to add an element to the list 
---    Up to 10 points for allowing the user to look for an element in the list and highlighting 

that element if found.  
 

Singly Linked List: 60 points 
 

-‐‐ Up  to  10  points  for  appropriate  documentation  and  comments 

-‐‐   Up to  10 points for filling the survey:   

 https://unccpsych.az1.qualtrics.com/jfe/form/SV_dcK4tmEmIQ68hDv 

-‐‐ Up to 40 points for correctly designing the subclass and adding methods to set color, 
opacity, shape, and size for the  current  element 

 

 
 

  Total points available: 150 

https://unccpsych.az1.qualtrics.com/jfe/form/SV_dcK4tmEmIQ68hDv


4  

Part II 

Overview 

The primary goal of this part of the assignment is to design recursive functions. 
 
 

Tasks 
 

--- Create a new project 
--- Design a recursive method for each of the method declarations below 
--- Create a main method and test your designed methods 

 
public static int multiply (int a, int b) 

This method takes to numbers a and b and recursively multiply them together. Assume that a and b are 
positive integers. The only arithmetic operation allowed in this problem is addition of two integers. 

 
public static int findMin (int array[]) 

This method takes an array of integers and return the smallest element of the array. 
 
public static int reverse (int number) 

This method returns the positive integer obtained when the digits of the parameter is reversed. For 
example, when called with the parameter 12345, this method would return 54321. (Do this with proper 
integer arithmetic instead of just simply converting to String, reversing that and then using parseInt to 
extract the result). 
Hint: The number of digits of a number can be obtained by taking the integer part of the logarithm in base 
10 of the number + 1 (i.e, num digits = log10(n) + 1). 

 
public static countPaths (int n, int m) 

You are standing at the point (n,m) of the grid of positive integers and want to go to origin (0,0) by taking 
steps either to left or down: that is, from each point (n,m) you are allowed to move either to the point (n- 
1,m) or the point (n,m-1). Implement the method that based on recursion counts the number of different 
paths from the point (n,m) to the origin. 

 

 
 

Scoring Rubric 
 
 
 

Tester:  
-‐‐ Up  to  20  points  for  appropriate  documentation, and tracing  (can be hand written, an uploaded 
photo for the tracing is acceptable). 
-‐‐ Up to 20 points for correctly designing a method recursively. 

 
 
 
 
 

  Total points available: 100 


