
ITCS 2215 Project 3-1: Bacon Number in Graphs Fall 2017

Due Nov 27, 2017, 11.59pm

This project will use IMDB’s actor/movie dataset to compute the Bacon Number of an actor, which refers
to the shortest path through the movie/actor graph that connects two actors – the so called ‘Six Degrees of
Separation’ problem. You will use the BRIDGES s/w to display the path that leads from the actor to Kevin
Bacon (or another chosen actor).

In part 1 (this project), you will build the full actor/movie graph, while in part 2, you will compute the
Bacon number using the BFS traversal.

More details of this problem can be found at

http://introcs.cs.princeton.edu/java/45graph/

Dataset:

We will use IMDB’s actor/movie dataset, which is now directly accessible through the BRIDGES API and
illustred in the example at http://bridgesuncc.github.io/Hello_World_Tutorials/Graph.html.

The graph representation utilizes the following class in BRIDGES:

• GraphAdjList<K, E> This is the main representation of the graph on BRIDGES, mapping vertex
values (in our case, actors or movie, names(String)) to any object E (in our case, we will point to
edge objects that contain an actor or movie name (String)); Each vertex will point to an adjacency
list, which will be used to store the graph edges (using the addEdge() member function). Methods to
query for a specific vertex by the key K, setting node and edge attributes are illustrated in the graph
example. Refer to the full class description at

http://bridgesuncc.github.io/doc/java-api/current/html/annotated.html

• Graph Adjacency List. The graph representation uses adjacency lists, i.e., each vertex points
to a singly linked list. This adjacency list is held in a Java HashMap, specifically, HashMap <
K,SLelement < Edge < K >>>. Hashmaps are implementations of hash tables in Java. Here we use
the key K (representing a vertex) to point its adjacency list (which is of type SLelement < Edge <
K >>). Thus, indexing into this hashmap with an actor or movie name will point to an adjacency list
containing the movies or actors connected to the vertex or movie, respectively. The addEdge() method
is used to build the adjacency lists. Again, refer to the graph example on how to access and iterate
through the adjacency lists, given a vertex name.

• Edge < K >. Used by adjacency lists, this is the class that holds the terminating vertex of the edge.
The vertex has a name and possibly a edge weight, if applicable.

Tasks. Part 1: Due Nov. 22, 11.59pm

1. Get the BRIDGES graph example in the above link working, as per the instructions provided
during the class lab exercise. Output the visualization; this should match the visualization at the above
link.

2. Build and visualize the full graph. The call (refer to the example)

ArrayList<ActorMovieIMDB> actor mov ie data =
(ArrayList<ActorMovieIMDB>) b r idge s . getActorMovieIMDBData (”IMDB” , 1800) ;

returns an array of actor-movie pairs (ignore the second parameter and use the size of the array for the
number of actor-movie pairs). The ActorMovieIMDB class is described in the Java API documentation
(see above link to all classes). Note that actors and movies should only occur once, i.e., you will build
a graph that has a unique set of actors and movie nodes. Each actor/movie pair results in two edges,
from actor=⇒ movie and from movie=⇒ actor. The graph you are building is effectively an undirected
graph.

Nov. 16, 2017 1 K.R.Subramanian

ITCS 2215 Project 3-1: Bacon Number in Graphs Fall 2017

Thus, prior to adding a vertex (actor or movie) to the graph, you must check if the actor already exists
(using the getVertices() method returns the hashmap of all vertices, which you can used to check to
see if a particular vertex exists within the hashmap). If it already exists, then the movie or actor is
added to its corresponding adjacency list. Else, a new vertex is created and its first edge to its movie
or actor is created (again, you must check to see if the movie or actor it connects already exists or
not).

At the end of this process, the graph contains a unique list of actors and movies and
the edges represent relationships between the movies and actors: an actor’s adjacency
list contains all the movies corresponding to the actor and a movie’s adjacency list cor-
responds to all the actors in that movie.

3. Once the graph is built, label the nodes of the graph to display the actor name or movie name depending
on the node. See the graph example for the appropriate member functions.

Evaluation:

You will do an interactive demo of your implementation. This should be a fun project.

Submission Requirements.

Turn in all of source code to Canvas; ensure it is well documented.

Nov. 16, 2017 2 K.R.Subramanian

