
ITCS 2215 Project 3-2 Bacon Number in Graphs Fall 2017

Due Dec 6, 2017

This project will use IMDB’s actor/movie dataset to compute the Bacon Number of an actor, which refers
to the shortest path through the movie/actor graph that connects two actors – the so called ‘Six Degrees of
Separation’ problem. You will use the BRIDGES s/w to display the path that leads from the actor to Kevin
Bacon (or another chosen actor).

In part 1 (this project), you built the graph of all the actors and movies, with actors connected to the
movies they were part of, while movies were connected to all actors in that movie. In part 2 (this project),
you will compute the Bacon number for an actor using the BFS traversal. The Bacon number for an
actor is defined as the smallest number of links that connects the given actor to another actor; in particular,
the Bacon number for all actors to Kevin Bacon is less than 6, given the number of actors Kevin Bacon has
collaborated during his career.

More details of this problem can be found at

http://introcs.cs.princeton.edu/java/45graph/

Dataset:

Same as part 1.

GraphAdjList<K, E>

This is the main representation of the graph on BRIDGES, mapping vertex values (in our case, actors or
movie names (String)) to an object E (in our case, we will point to lists of edge objects that contain an
actor or movie name (String)); Each vertex will point to an adjacency list (which is a singly linked list of
type SLelement¡E¿), and which will store the graph edges. Methods to query for a specific vertex by the key
K, setting node and edge attributes are illustrated in the graph example. Refer to the full class description at

http://bridgesuncc.github.io/doc/java-api/current/html/annotated.html

Tasks.

1. Input. User will specify the source and target actor names; assume the actors exist in the graph.

2. Implement the BFS traversal. You will need to use a queue (use any of the Java queue implemen-
tations, eg. ArrayQueue, LinkedList, etc) as part of the algorithm (see Section 3.5, Text). You will
need to use the adjacency lists of the graph to iterate over the children of a node. See the BRIDGES
graph example that illustrates this and how to access the edge vertices. This will be needed to apply
attributes(color, size, etc) to nodes and edges in the path from the source to the destination node.

3. Bacon number - path length computaton. The Bacon number represents the path length from
a start node to a destination node. Let D(i) represents the distance of a node i from its start node.
During the BFS traversal, we will update the distance as follows:

Di = Dparent(i) + 1

with the source node D(source) = 0.

Thus, as the BFS traversal progresses from the start node, the distances of the visited nodes are
updated, until the destination node is reached. The final distance to the destination node is the Bacon
number of the source node.

November 30, 2017 1 K.R.Subramanian

ITCS 2215 Project 3-2 Bacon Number in Graphs Fall 2017

4. Displaying/Highlighting the path. Given that we have a visualization of the actor-movie graph,
it makes sense to display the path, once the BFS traversal is completed. This can be done by keeping
track of the parent of each node that was visited during the BFS traversal. Again, a hashmap
Parent < String, String > is maintained. When the traversal visits a node N , and N is a child of
P , then Parent(N) = P. Once the destination actor is found, then we use the hashmap to trace back
the path towards the source actor using Parent hashmap (linear in the number of nodes in the path).
Once the names of the actors/movies in teh path is known, use the vertices hashmap to access the
nodes, so as to set the visual attibutes.

Implementation Details.

1. BFS Traversal. Refer to Section 3.5, Text for pseudo code of algorithm. You will need to use a
queue as part of the traversal; for this you can use any of Java’s queue implementations (LinkedList,
ArrayQueue, etc.) In order to ensure that nodes are not repeatedly visited, keep a HashMap, Mark <
String,Boolean > that marks nodes as they are visited.

2. Distance Computations. Use a Java HashMap Distance < String, Integer > to keep track of the
distance at each node.

3. For the path computation, you will need to keep track of the parent of each node; again use a HashMap,
Parent < String, String >. with the mapping from node to its parent.

4. Setting attributes to vertices and edges. The following sequence can be used to get to a vertex
for settting attributes:

Element<Str ing> ver t = graph . g e t V e r t i c e s () . getVertex (vertex name) ;
ve r t . g e t V i s u a l i z e r () . s e tCo lo r (” green ”)

To set the color of a link between two elements el1 and el2, you can do the following

e l 1 . g e t L i n k V i s u a l i z e r (e l 2) . s e tCo lo r (” green ”) ;

Evaluation:

You will do an interactive demo of your implementation. This should be a fun project.

Submission Requirements.

Turn in all of source code to Canvas; ensure it is well documented.

November 30, 2017 2 K.R.Subramanian

