
ITCS 2215 Project 3-3: AVL Trees Spring 2016

Due May 9, 11.59pm

In the final part of this project, you will use your current implementation to maintain a balanced
binary search tree, specifically as an AVL tree. We will only do a limited form of the AVL tree by
supporting only insertions; this would require at most one rotation operation after each insertion
of a new key.
Implementation Details The AVL tree implementation for insert operations can be integrated
into the insert operation. Remember the insert operation (from the BST class) is as follows:

private BSTElement<Key ,E> i n s e r t h e l p (BSTElement<Key ,E> rt , Key k , E e) {
i f (r t == nu l l) {

BSTElement<Key , E> new node = new BSTElement<Key , E>(k , e) ;
return new node ;

}
i f (r t . getKey () . compareTo (k) > 0)

r t . s e tL e f t (i n s e r t h e l p (r t . g e tLe f t () , k , e)) ;
else

r t . s e tRight (i n s e r t h e l p (r t . getRight () , k , e)) ;
// note t ha t the r e f e r ence to t h i s node i s returned ,
// which i s c r i t i c a l to the implementat ion as the
// t r e e s t r u c t u r e can change to maintain ba lance

return r t ;

In part 2 of the project you had augmented this module to also maintain the height and balance
factors at each node. Thus, you can further modify the insert operation to maintain an AVL style
balanced tree as follows (only psuedo code provided)

private BSTElement<Key ,E> i n s e r t h e l p (BSTElement<Key ,E> rt , Key k , E e) {
i f (r t == nu l l) {

BSTElement<Key , E> new node = new BSTElement<Key , E>(k , e) ;
// must ensure the h e i g h t and ba lance f a c t o r s
// o f the l ea fnode i s s e t c o r r e c t l y

return new node ;
}
i f (r t . getKey () . compareTo (k) > 0) {

r t . s e tL e f t (i n s e r t h e l p (r t . g e tLe f t () , k , e)) ;
}
else {

r t . s e tRight (i n s e r t h e l p (r t . getRight () , k , e)) ;
}

// next compute the h e i g h t and ba lance f a c t o r o f t h i s node
r t . setValue (.)

// next check the ba lance f a c t o r (note t ha t we are
// t r a v e r s i n g bottom up

i f (r t s b a l a n c e f a c t o r == 2 | | r t s b a l an c e f a c t o r == −2) {
// t r e e i s unbalanced , must r o t a t e

L , R, LR or RL <−−−−− f indRotationType (r t)

Perform the r o t a t i on (this usua l l y 3−4 po in t e r changes , note
root o f subt ree changes , hence the need to return the node (s ee
below) . LR and RL are c a l l s to L and R
// recompute and update the h e i g h t o f the en t i r e sub t r e e at
// t h i s node (use the func t i on from par t 2 o f the p r o j e c t)

May 4, 2016 1 K.R.Subramanian

ITCS 2215 Project 3-3: AVL Trees Spring 2016

UpdateHeight (r t) ;
}

// note t ha t the r e f e r ence to t h i s node i s returned ,
// which i s c r i t i c a l to the implementat ion as the
// t r e e s t r u c t u r e can change to maintain ba lance

return r t ;
}

Thus, the modified insert algorithm inserts the new key as before, but when re-
turning from the recursion, it updates the height and balance factors and if needed,
performs rotations, again updates the height and balance factors of the rotated subtree
and continues upward.
[Requirements/Evaluation.]

1. This project can be done in 2 person teams; peer evaluation will be performed to
indicate the role of each member.

2. You will use both part 1 and part 2 of the project and use the earthquake dataset (for
debugging puposes, start with 10 earthquakes and then increase tree size).

3. All needed functions can be private to the BST class.

4. Display both the balance factors and the earthquake data (concatenate and format so the
information is readable) on mouseover.

5. Evaluation: By Interactive Demo. You will test your implementation by

(a) Inserting the earthquake records in the given order; visualize the tree.

(b) You will sort the earthquakes by magnitude in ascending order and insert them into
the tree. Demonstrate intially with just a few quake records to verify the rotations are
working; then increase the number of records to 50, 100, 200.

(c) Repeat with descending order.

Grading Rubric.

1. Left Rotation (2 point)

2. Right Rotation (2 point)

3. Left-Right Rotation (2 point)

4. Right-Left Rotation (2 point)

5. Documentation(1 point)

6. Survey (1 point)

May 4, 2016 2 K.R.Subramanian

