
CSC 205

Fundamentals of Computer Science II

Spring 2017

Project 2

Due by noon on Thursday, May 11.

For this project you will develop methods to manipulate a Binary Search Tree. Binary
Search Trees are a fundamental data structure in computing, and are the underlying structure of
the TreeSet and TreeMap classes in the Java Collection Frameworks. As before, we will be
using the software of the BRIDGES project, which allows us to visualize the shape of the Binary
Search Tree, and to see how it is altered by your methods.

The given source code includes a class called BinarySearchTree_Bridges. This class
implements a Binary Tree, using the BSTElement class from Bridges to represent the nodes in
the tree. Similar to the TreeMap in the Java Collection Framework, each element in the tree will
store both a key and the value associated with that key. The given Driver source code uses
Student objects as the test data, where the key associated with each Student is the name field.
But any Object that is Comparable could also be stored in this Binary Search Tree.

The given BinarySearchTree_Bridges class has a method to search (i.e., “get”) the tree for a
given target key.

For this assignment you must complete the methods in the BinarySearchTree_Bridges class
to perform the following operations.

 public void resetColor (Color c)
This method traverses the entire tree and sets the color of each node to the
specified color c.

 public E last (Color c)

This method locates and returns the maximum value in the tree, and also changes
the color of every node along the path from the root to the maximum value to be
the specified color c.

 public E first (Color c)

This method locates and returns the minimum value in the tree, and also changes
the color of every node along the path from the root to the minimum value to be
the specified color c.

 public int countAndColorMajors (Color c , String theMajor)

This method traverses the entire tree. Each node is examined, and if the value
stored at that node is a Student object, and if the major field of that Student object
equals the parameter theMajor, then that node is set to the specified color c. The
total number of nodes that are colored by this method is returned. Note that this is
the only method in this assignment that assumes that the data stored in the tree are
Student objects. Your code can always check whether a value stored in the tree is
a Students object using the instanceof operator in Java. For example:

 if (foo instanceof Student) { }

 public void colorRange (Color c, K minVal, K maxVal)

This method resets the color of every item in the tree whose key is greater-than-
or-equal-to minVal, and less-than maxVal, to be the specified color c.

 public void deleteSmall (K key)

This method removes from the tree every item whose key is less-than-or-equal-to
the given parameter key. To remove these keys you should directly alter the
pointers in the tree using setLeft and setRight methods to “splice out” the small
values.

 public void deleteLarge (K key)
This method removes from the tree every item whose key is greater-than the give
parameter key.

 public E colorLower (K key, Color c)

This method locates and returns the largest value in the tree that is strictly less
than the given parameter key. If no such item exists, then the value null is
returned. If the item exists, then the method changes the color of that node to be
the specified color c.

 public E colorHigher (K key, Color c)
This method locates and returns the smallest value in the tree that is strictly
greater than the given parameter key. If no such item exists, then the value null is
returned. If the item exists, then the method changes the color of that node to be
the specified color c.

As always, you should implement all these methods in the most efficient manner possible.

Your code should not traverse more nodes in the tree than is necessary.

The given Driver code will test your methods and display the tree that is produced by your
code. You should create additional test cases to insure that your code is correct, instead of
relying only on the given test cases.

Deliverables:

 Complete the Bridges survey at
https://unccpsych.az1.qualtrics.com/jfe/form/SV_dcK4tmEmIQ68hDv and take a screen shot
of the survey after you have completed it.

 Upload a zipped file of the BinarySearchTree_Bridges.java file and your survey
screenshot to Blackboard

 Hand in a paper copy of your BinarySearchTree_Bridges.java file. Be sure that your code
is readable (the code must not spill over the line onto the next line). Your code must use
good programming style (proper indentation, good use of comments, well chosen,
meaningful variable names, etc.)

If you have difficulty with the BRIDGES software, or seeing your visualization, then you can
contact tues-bridges-group@uncc.edu (use the Subject line: Bridges Query).

