
		

		 Assignment	6	 ---		Binary	Search	Trees		 	
	
	
This	assignment	has	two	parts;	the	first	part	covers	binary	trees	where	the	goal	is	to	
construct	and	visualize	a	new	binary	tree	implementation	using	Bridges	
BinTreeElement.	The	second	covers	binary	search	trees		in	which	you	will	be	asked	to	
complete	the	BST	class		.	

	
	
	
Part	I	

Overview	

The	primary	goals	of	 this	program	are	as	follows:	
(1) Create	a	simpleBinaryTree	class	that	implements	Binary	Tree	using	Bridges	

BinTreeElement	objects.	
(2) Create	a	main	method	to	demonstrate	the	Binary	Tree	data	structure.		Assign	visual	

properties	to	the	elements	of	the	Binary	Tree.	
	
The	Binary	Tree	implementation	will	be	similar	to	the	List	implementation	we	worked	on	
earlier	but	you	will	use	BinTreeElement	to	construct	the	nodes	and	setLeft	and	setRight	to	
connect	the	nodes	the	nodes	to	each	other	and	build	the	tree.			
	
The	Tester	should	create	an	instance	of	the	Binary	Tree	class.	The	binary	tree	will	store	6	
integer	values.	Make	sure	you	use	the	integer	values	as	the	labels	for	the	nodes.	The	binary	tree	
should	be	visualized	with	the	root	element	featuring	different	visual	properties.	Visualizing	the	
data	structure	and	adding	visual	properties	to	binary	tree	elements	can	be	accomplished	
easily	with	the	Bridges	API.	 	

	
	
	
Deliverables	 –	
Your	program	should	generate	will	be	something	 like	 this:
	
	

		

Part	II	
BST	Assignment–	

	 	
Overview	

The	primary	goals	of	 this	program	are	as	follows:	
(1) Complete	the	BST	class	using	Bridges	BinTreeElement	objects.	
(2) Create	a	Tester	class	to	demonstrate	the	Binary	Tree	data	structure.		Assign	visual	properties	

to	the	elements	of	the	Binary	Tree.	
	
The	Binary	Tree	implementation	(BST	class)	will	implement	the	Dictionary	interface	and	extends	
the	comparable	class.	You	will	complete	the	implementations	of	the	methods	in	the	Dictionary	interface.			
	
The	Tester	should	create	an	instance	of	the	Binary	Tree	class.	The	binary	tree	will	store	a	number	
of	string	words.	The	binary	tree	should	be	visualized	with	the	root	element	featuring	different	visual	
properties.	Visualizing	the	data	structure	and	adding	visual	properties	to	binary	tree	elements	can	be	
accomplished	easily	with	the	Bridges	API.	 	

	

	
Using	the	provided	BST	class	skeleton	do	the	following:	

---	 Import		bridges.base.BSTElement	library	to		allow		you		to		use		BSTElement		objects		in		this		class	
---	 Don’t		forget		to		parameterize		the		SLelement		objects		with		the		generic		type	arguments,	Key,	E.		

You	can	examine	the	documentation	for	BSTElement	nodes.	
---	 Create	the	following	methods	in	the	BST	class:		

private	BSTElement<Key,E>	inserthelp(BSTElement<Key,E>	rt,	Key	k,	E	e)	
private	BSTElement<Key,E>	getmin(BSTElement<Key,E>	rt)	
private	BSTElement<Key,E>	deletemin(BSTElement<Key,E>	rt)	
private	void	inOrderTraversal	(BSTElement<Key,E>	rt)	
private	void	postOrderTraversal	(BSTElement<Key,E>	rt)	
private	void	preOrderTraversal	(BSTElement<Key,E>	rt)	

	
Tester	–	

---	 Create		 a		 Tester		 class		with		 a		main		method	
---	 Import		bridges.connect.Bridges		to		allow		you		to		create		a		Bridges		object	
---	 Initialize	a	Bridges	object	with	the	assignment	 number,	 your	 username,	 and	your		API		

key.			
---	 Create	 an	 instance		of	 your	 BST	 class	 and		parameterize	 it	 to	 hold		elements	and	keys	
---	 Insert	13		new		elements		to		your		BST.					
---	 	Call	 Bridges’	setDataStructure		method		passing		in		the		head		of		your		list		and		then		call		

Bridges’	visualize		method.	
	

Deliverables	 –	
	

The	 final	Bridges	assignment	your	program	should	generate	will	be	something	 like	 this:

		

	

Scoring	 Rubric	
	
	
	
Part	I:	 80	points	

---	 Up		to		10		points		for		appropriate		documentation		and		comments	
---	 Up	 to	 10	 points	 for	 correctly	 adding	 6	 elements	 to	 the	 list	 	
---	 Up	 to	 20	 points	 for	 setting	 the	 labels	 for	 all	 the	 added	 elements	
---	 Up	 to	 20	 points	 for	 setting	 new	 distinct	 visual	 properties	 for	 the	root	and	the	smallest	

element	
---	 Up	 to	 20	 points	 for	 visualizing	the	BST	data	structure		

	
	
Part	II:	 120	points	

	

---	 Up		to		10		points		for		appropriate		documentation		and		comments	
---			Up	 to	 10	 points	 for	 correctly	 adding	 13	 elements	 to	 the	 list	
---	 Up	 to		45	 points	 for	 correctly	 implementing	 the		traversal		methods	
---	 Up	 to	 20	 points	 for	 implementing	the	insert	method	
---			Up	to	10	points	for	correctly	implementing	the	remove	min	method	
---			Up	to	10	points	for	correctly	implementing	the	get	minimum	method	
--- Up to 5 points for filling this

survey: https://unccpsych.az1.qualtrics.com/jfe/form/SV_dcK4tmEmIQ68hDv	
	

	
	
		 Total	points	available:	 200	

