
		

		 Assignment	4	 ---		Lists	&	Recursion		 	
	
	
This	assignment	has	two	parts;	the	first	part	covers	lists	where	the	goal	is	to	construct	
and	visualize	a	new	Singly	Linked	List	implementation	using	Bridges	SLelements	
instead	of	Linked	Node	objects.	The	second	part	covers	recursion	in	which	you	will	be	
asked	to	design	four	recursive	functions.	

	
	
	
Part	I	

Overview	

The	primary	goals	of	 this	program	are	as	follows:	
(1) Create	a	new	implementation	of	 the	List	class	using	Bridges	SLelement	objects	

instead	of	the	Node	class	we	created	in	class.	
(2) Create	a	Tester	class	to	demonstrate	the	Singly	Linked	List	data	structure.		 Assign	

visual	properties	to	the	elements	of	 the	List.	
	
The	Singly	Linked	List	implementation	will	be	almost	exactly	the	same	as	the	Linked	List	
implementation	we	worked	on	in	class.	Singly	Linked	Elements	 from	 the	Bridges	package	
support	the	same	operations	as	the	Node	class,	although	the	names	for	the	various	
operations	might	 differ	 slightly.	

You	essentially	need	 to	go	through	the	Linked	List	 implementation,	 find	every	
occurrence	of	a	Node	object	and	its	operations,	and	replace	it	with	the	equivalent	SLelement	
objects	and	operations.	The	logic	of	 the	data	structure	should	not	change	(provided	your	
original	LinkedList	class	worked	 properly).	
	
The	Tester	should	create	an	instance	of	the	Singly	Linked	List	class.	The	list	will	store	a	
sequence	of	 integers.	The	 list	should	be	visualized	a	number	of	times	as	elements	are	added	
to	 it,	and	each	set	of	new	elements	should	feature	different	visual	properties.	Visualizing	the	
data	structure	and	adding	visual	properties	to	 list	elements	can	be	accomplished	easily	with	
the	Bridges	API.	See	the	Tasks	section	for	specific	details	and	instructions.	

	
	
	
Tasks	

	
Follow	the	instructions	on	this	website	to	add	the	Bridges	library	to	BlueJ:	
http://bridgesuncc.github.io/bridges_setup_java_bluej.html	
	
Create	a	project	named	Training	in	BlueJ	and	re-create	this	example:	
http://bridgesuncc.github.io/Hello_World_Tutorials/SLL.html	

	
	
Documentation	 for	Bridges	classes	can	be	found	at	the	 following	 link:	
http://bridgesuncc.github.io/doc/java-api/current/html/index.html	



		

Singly	Linked	List	Assignment–	
---	 	Create	a	ourLinkedList	interface	with	the	following	functions:	
																				-	add	(list,	element):	void	–	this	method	appends	the	specified	element	to	the	list	
																					-	contains	(element):	boolean	–	this	method	returns	true	if	the	list	contains	the	specified	

element	
	 		 						-	peek	():	T		
																				-	remove	(index):	T	–	this	method	removes	the	element	at	the	specified	index	and	returns	

that	element	
	 		 						-	findRightPlaceAndInsert(element):	Boolean	–	this	method	finds	the	right	place	for	the	

element	based	on	chronological	order	then	add	the	object	to	the	list	at	that	place.	The	method	
returns	true	when	the	object	is	added	to	the	list	successfully.		

	 		 						-	findAndHighlight	(element):	true	 --	this	method	returns	true	if	the	element	is	in	the	list.	
The	method	change	the	size	and	color	of	the	node	holding	that	element.			

	 	
---			Create	SList	class	that	implements	the	LinkedList	interface	(you	will	need	to	implement	the	node	
class	inside	the	SList	class)	
---	 Import		bridges.base.SLelement		library	to		allow		you		to		use		SLelement		objects		in		this		class	
---	 Replace		every		instance		and	 operation		of	 the		Node	 class		with	an		SLelement	object		and		its		

equivalent		methods	
---	 Don’t		forget		to		parameterize		the		SLelement		objects		with		the		generic		type	argument.		You		can		

examine		the		documentation		to		determine		which		methods		to	use		to		replace		the		Node		class’		
methods	

---	 Create	an	updateLabel	method	that	sets	the	 label	equal	to	the	new	element’s	value	
---	 Create		methods		to		change		the		current		element’s		color,		size,		shape,		and		opacity.	

These	are	all	 supported	with	Bridges	methods	accessible	 through	SLelement’s	getVisualizer	
method.	Since	the	driver	won’t	have	direct	access	to	the	list’s	current	SLelement,	you	need	
to	call	 these	respective	Bridges	methods	from	the	SLList	class	using	arguments	passed	 from	
the	driver.	
	

----	
	
Tester	–	

---	 Create		 a		 Tester		 class		with		 a		main		method	
---	 Import		bridges.connect.Bridges		to		allow		you		to		create		a		Bridges		object	
---	 Initialize	a	Bridges	object	with	the	assignment	 number,	 your	 username,	 and	your		API		

key.		(See		the		Bridges		template		on		Moodle		for	 details)	
---	 Create	 an	 instance		of	 your	 SList	 class	 and		parameterize	 it	 to	 hold		Integers	
---	 Add		100		new		elements		to		your		SList.		The		elements		should		simply		contain		the	index		of		

whichever		loop		construct		you		use,		and		should		be		inserted		in		increasing	order	 (from	 0	 to	
99)	

---	 Every		successive		set		of		25		elements		should		have		different		visual		properties		from	the	 other	
75.	 You	 are	 free	 to	 use	 whichever	 attributes	 you	 like:	

o color	can	be	set	to	any	css	or	RGB	color	
o opacity	can	be	set	between	0	and	1	
o size	can	be	set	between	1	and	50	
o shape	can	be	set	 from	among	the	following	options:	[square,	diamond,	

triangle-•-down,	cross,	triangle-•-up,	circle]	
	
	
	
	
	
	

---	 After	 every	 successive	 set	 of	 25	 elements		are	 added	 to	 the		list,	 call	 Bridges’	



		

setDataStructure		method		passing		in		the		head		of		your		list		and		then		call		Bridges’	visualize			
method	

	

Deliverables	 –	
	

The	 final	Bridges	assignment	your	program	should	generate	will	be	something	 like	 this:	

 
	

Scoring	 Rubric	
	
	
	
Tester:	 80	points	

---	 Up		to		10		points		for		appropriate		documentation		and		comments	
---	 Up	 to	 10	 points	 for	 correctly	 adding	 100	 elements	 to	 the	 list	 in	 increasing	 order	
---	 Up	 to	 20	 points	 for	 setting	 the	 labels	 for	 all	 the	 added	 elements	
---	 Up	 to	 20	 points	 for	 setting	 new	 distinct	 visual	 properties	 for	 each	 new	 set	 of	 25	elements	
---	 Up	 to	 20	 points	 for	 visualizing	 the	 data	 structure	 after	 each	 set	 of	 25	 elements	 are	added	

(you	 will	 generate	 a	 total	 of	 4	 visualizations	 with	 25,	 50,	 75,	 and	 100	elements,				
respectively)	

	
	
	
Singly	Linked	List:	 50	points	

	

---	 Up		to		10		points		for		appropriate		documentation		and		comments	
---	 Up	 to		20	 points	 for	 correctly	 implementing	 the		Singly		Linked		List	 class	 with	

SLelement			Nodes	
---	 Up	 to	 20	 points	 for	 correctly	 adding	 methods	 to	 set	 color,	 opacity,	 shape,	 and	 size	 for	the		

current		 element	
	

	
	
		 Total	points	available:	 130	
	


