
BRIDGES Workshop Agenda
TEMPLE UNIVERSITY CENTER CITY

Room 325
Philadelphia, PA 19102

June 6, 2018

8.30-9.00 Breakfast
9.00 Introductions
9.20 BRIDGES Overview
9.40 Workshop Overview
9.50 BRIDGES Setup
10.00 Break (Refreshments, Continue BRIDGES Setup for attendees)
10.30 BRIDGES Basics (3 examples)

(a) BRIDGES Account/Credentials, 10 element array Example
(b) Acquiring External Data (Singly linked list of actors/movies)
(c) Visual Attributes/Styling (Singly Linked list - Earthquake Magnitude/Scale/Color)

12.00pm Lunch (on your own - we will go somewhere nearby)
1.30pm Exercise 1 (Will pick 1 out of 3 possible exercises)
2.30pm Break
2.40pm Exercise 2 (Will pick 1 out of 3 possible exercises)
3.30pm PR Pitch (Invite partners to collect feedback)
3.40pm Workshop Survey

https://unccpsych.az1.qualtrics.com/jfe/form/SV bgxw85Ztuirjltz)
3.50pm Discussion/Direct Feedback
4.10pm Forms/Paperwork
4.20pm Adjourn

1. Location. Please note the workshop is not on the main Temple university campus, but
Temple University Center City Building, (1515 Market St, Philadelphia, PA 19102)
which is in downtown Philadelphia Maps and Directions:
https://www.temple.edu/tucc/about/maps-directions.asp

2. Parking. Please see the following link for discounted parking (we will reimburse you for
parking as part of stipend). Temple University Center City Parking:
https://www.temple.edu/tucc/about/parking.asp

1

https://unccpsych.az1.qualtrics.com/jfe/form/SV_bgxw85Ztuirjltz
https://www.temple.edu/tucc/about/maps-directions.asp
https://www.temple.edu/tucc/about/parking.asp


Assignment	0	-	SETUP
Goals
The	purpose	of	this	assignment	is	to

1.	 Create	an	account	on	the	BRIDGES	server.
2.	 Use	your	BRIDGES	credentials	in	code.
3.	 Upload	a	simple	visualization	to	BRIDGES.
4.	 Check	if	it	works.

You	will	generate	a	visualization	that	looks	like	that!

Create	an	account	on	the	BRIDGES	server
1.	 Go	to	http://bridgesuncc.github.io/.
2.	 Click	on	"Login"	(at	the	upper	right	corner).
3.	 Click	on	"Sign	Up!"	(at	the	bottom	of	the	"Log	in!"	box).
4.	 Fill	out	form	(Email	is	only	used	to	recover	password).
5.	 Go	to	the	"Profile"	page	(link	at	the	top	right).
6.	 Note	the	"API	Sha1	Key";	you	will	need	it	in	the	next	part.

Programming	part
Task

Visualize	an	array	of	10	elements	where	each	element	stores	a	square	number.

Using	credentials

1.	 Open	your	scaffolded	code.
2.	 Plug	in	your	credentials.
3.	 Compile	and	run	the	code.
4.	 Follow	the	link	and	check	that	you	can	see	an	array	of	2	elements.

Changing	the	array

1.	 Change	the	array	size	to	10.
2.	 Using	a	for	loop,	initialize	each	array	entry	to	store	a	square	number	(0,	1,	4,	...).
3.	 Compile	and	run	the	code.
4.	 Follow	the	link	and	check	that	you	can	see	an	array	of	square	numbers.

Help

for	Java

Array	documentation

Element	documentation

for	C++

Array	documentation

http://bridges-cs.herokuapp.com/assignments/0/bridges_workshop
http://bridgesuncc.github.io/
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_array.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_element.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_array.html


Element	documentation

http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_element.html


Assignment	1	-	List	IMDB
Goals
The	purpose	of	this	assignment	is	to	learn	to

1.	 Access	remote	data	through	BRIDGES.
2.	 Manipulate	a	linked	list.

You	will	generate	a	visualization	that	looks	like	that!

Programming	part
Task

Build	a	linked	list	containing	each	(actor,movie)	pair	that	appears	in	the	Actor	Movie	IMDB
data	set.

Basic

1.	 Open	your	scaffolded	code.
2.	 Plug	in	your	credentials.
3.	 Compile	and	run	the	code	and	observe	the	basic	linked	list.

Build	Actor	Movie	linked	list

1.	 Change	SLelement	to	be	a	list	of	ActorMovieIMDB.
2.	 For	each	entry	in	the	set	of	actor	movie,	create	an	SLelement	to	store	it	with	an	explicit

label.
1.	 We	recommend	you	add	each	new	entry	to	the	head	of	the	list	for	simplicity.

3.	 Compile	and	run	the	code	and	observe	the	linked	list	of	(actor,movie)	pairs.

Help

for	Java

SLelement	documentation

Element	documentation

ActorMovieIMDB	documentation

for	C++

SLelement	documentation

Element	documentation

ActorMovieIMDB	documentation

http://bridges-cs.herokuapp.com/assignments/1/bridges_workshop
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_s_lelement.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_element.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1data__src__dependent_1_1_actor_movie_i_m_d_b.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_s_lelement.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_element.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_actor_movie_i_m_d_b.html


Assignment	2	-	List	Earthquake
Goals
The	purpose	of	this	assignment	is	to	learn	to

1.	 Change	the	style	of	nodes.
2.	 Use	the	earthquake	data.

You	will	generate	a	visualization	that	looks	like	that!

Programming	part
Task

Style	a	linked	list	of	earthquake	records.

Node	styling

1.	 Open	your	scaffolded	code.
2.	 Plug	in	your	credentials.
3.	 All	the	styling	will	be	done	in	setProperties.
4.	 Get	the	EarthquakeUSGS	object	from	the	SLelement.
5.	 Get	the	ElementVisualizer	object	from	the	SLelement.
6.	 Change	the	element	size	based	on	the	earthquake	magnitude.
7.	 Give	the	element	a	different	shape	if	the	earthquake	is	in	Hawaii,	and	yet	another	shape

if	it	is	in	Alaska.

Help

for	Java

SLelement	documentation

Element	documentation

ElementVisualizer	documentation

EarthquakeUSGS	documentation

for	C++

SLelement	documentation

Element	documentation

ElementVisualizer	documentation

EarthquakeUSGS	documentation

http://bridges-cs.herokuapp.com/assignments/2/bridges_workshop
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_s_lelement.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_element.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_element_visualizer.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1data__src__dependent_1_1_earthquake_u_s_g_s.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_s_lelement.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_element.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_element_visualizer.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_earthquake_u_s_g_s.html


Assignment	3	-	Graph	Bacon	Number
Goals
The	purpose	of	this	assignment	is	to	learn	to

1.	 Use	the	IMDB	Actor	Movie	graph.
2.	 Compute	BFS	on	that	graph.
3.	 Highlight	a	shortest	path	in	the	graph.

You	will	generate	a	visualization	that	looks	like	that!

Programming	part
Task

Highlight	the	shortest	path	between	two	actors	in	a	Movie	Actor	graph.

Getting	Started

1.	 Open	your	scaffolded	code.
2.	 Plug	in	your	credentials.
3.	 Change	the	style	of	nodes	Cate_Blanchett	and	Kevin_Bacon_(I),	directly	attached	nodes,

and	directly	attached	edges.
4.	 Compile,	run,	and	visualize.

Perform	BFS

1.	 Write	a	BFS	traversal	in	getBaconNumber	that	keeps	track	of	parent	information.	Here	is	the
algorithm:

BFS(G=(V,E),	root)
		forall	v	in	V
				mark[v]	=	false;
		mark[root]	=	true;
		queue.push(root);
		while	(!	queue.empty()	)
				v	=	queue.pop();
				for	(u	in	neighboor(v))
						if	(mark[u]	==	false)
								mark[u]	=	true;
	 parent[u]	=	v;

2.	 We	recommend	using	a	built-in	associative	array	for	storing	parents,	such	as	Java's
HashMap	or	C++'s	std::unordered_map.

3.	 We	recommend	using	a	built-in	queue,	such	as	Java's	ArrayDeque	or	C++'s	std::queue.

Style	the	BFS	path

1.	 Start	from	the	Cate_Blanchett	node.
2.	 Color	the	current	node	red	and	make	it	bigger.
3.	 Style	the	edge	from	the	current	node	to	its	parent.	Make	it	red	and	bigger.
4.	 Go	to	the	parent	node	and	go	back	to	2	until	Kevin_Bacon_(I)	has	been	reached.

Help

http://bridges-cs.herokuapp.com/assignments/3/bridges_workshop


for	Java

ArrayDeque	documentation

HashMap	documentation

Element	documentation

GraphAdjListSimple	documentation

ElementVisualizer	documentation

LinkVisualizer	documentation

ActorMovieIMDB	documentation

for	C++

std::queue	documentation

std::unordered_map	documentation

Element	documentation

GraphAdjList	documentation

ElementVisualizer	documentation

LinkVisualizer	documentation

ActorMovieIMDB	documentation

https://docs.oracle.com/javase/7/docs/api/java/util/ArrayDeque.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_element.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_graph_adj_list_simple.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_element_visualizer.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_link_visualizer.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1data__src__dependent_1_1_actor_movie_i_m_d_b.html
http://en.cppreference.com/w/cpp/container/queue
http://en.cppreference.com/w/cpp/container/unordered_map
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_element.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_graph_adj_list.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_element_visualizer.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_link_visualizer.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_actor_movie_i_m_d_b.html


Assignment	4	-	Graph	Earthquake
Goals
The	purpose	of	this	assignment	is	to	learn	to

1.	 Access	and	manipulate	remote	data	through	BRIDGES.
2.	 Manipulate	a	GraphAdjList	object.
3.	 Display	a	location	on	a	map.

You	will	be	building	a	visualization	that	looks	like	that!

Programming	part
Task

Grab	recent	earthquake	data	and	build	a	graph	representing	the	locations	of	the	100
strongest	earthquakes.

Basic

1.	 Open	your	scaffolded	code.
2.	 Plug	in	your	credentials.
3.	 Get	the	most	recent	10,000	earthquakes.
4.	 Only	retain	the	100	highest	magnitude	earthquakes.

Place	Earthquakes	on	the	map

1.	 Create	a	graph	where	each	earthquake	is	a	vertex.
2.	 Add	no	edges	for	now.
3.	 Pin	earthquakes	at	their	longitude	and	latitude.
4.	 Tweak	the	appearance	of	vertices	if	you	want	(e.g.,	use	a	different	symbols	for

earthquake	in	Hawaii	or	Alaska).
5.	 Compile,	run,	and	visualize.

Build	a	graph	based	on	distances

1.	 For	each	pair	of	earthquakes:
1.	 Compute	the	distance	using	calcDistance.
2.	 If	the	earthquakes	are	closer	than	500km,	add	an	edge	between	them.

2.	 Compile,	run,	and	visualize.

Show	just	the	graph

1.	 Deactivate	the	map	overlay	(already	done	in	the	scaffolding).
2.	 Unpin	the	vertices	by	setting	their	location	to	infinity.
3.	 Compile,	run,	and	visualize.

Help

for	Java

Element	documentation

http://bridges-cs.herokuapp.com/assignments/4/bridges_workshop
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_element.html


GraphAdjListSimple	documentation

GraphAdjList	documentation

ElementVisualizer	documentation

EarthquakeUSGS	documentation

Bridges	class	documentation

for	C++

Element	documentation

GraphAdjList	documentation

ElementVisualizer	documentation

EarthquakeUSGS	documentation

DataSource	documentation

http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_graph_adj_list_simple.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_graph_adj_list.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_element_visualizer.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1data__src__dependent_1_1_earthquake_u_s_g_s.html
http://bridgesuncc.github.io/doc/java-api/current/html/namespacebridges_1_1base.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_element.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_graph_adj_list.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_element_visualizer.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_earthquake_u_s_g_s.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/namespacebridges_1_1_data_source.html


Assignment	5	-	BST	Earthquake	Data
Goals
The	purpose	of	this	assignment	is	to	learn	to

1.	 Use	(near)	real-time	collected	earthquake	data	with	a	binary	search	tree.
2.	 Insert	earthquake	data	into	the	nodes	of	a	binary	search	tree,	keyed	on	quake

magnitude.
3.	 Highlight	quakes	by	ranges	and	traversal	algorithms	in	the	BST

You	will	generate	a	visualization	that	looks	like	that!

Programming	part
Task

Highlight	the	shortest	path	between	two	actors	in	a	Movie	Actor	graph.

Getting	Started

1.	 Open	your	scaffolded	code.
2.	 Plug	in	your	credentials.
3.	 Retrieve	the	earthquake	data	(start	with	a	few	hundred),	then	visualize.
4.	 Filter	them	to	take	out	the	smallest	quakes,	visualize.
5.	 Look	at	BST	file.	Write	a	simple	recursive	algorithm	to	find	and	highlight	quakes	by	their

magnitudes.
6.	 Optional	exercises:	additional	algorithms,	mark	the	insertion/find	path	in	a	BST,	scale

node	size	by	magnitude,	etc.

Help

for	Java

List	Documentation

BSTElement	documentation

Element	documentation

ElementVisualizer	documentation

LinkVisualizer	documentation

EarthquakeUSGS	documentation

for	C++

std::vector	documentation

Element	documentation

BSTElement	documentation

ElementVisualizer	documentation

http://bridges-cs.herokuapp.com/assignments/5/bridges_workshop
https://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_b_s_t_element.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_element.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_element_visualizer.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_link_visualizer.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1data__src__dependent_1_1_earthquake_u_s_g_s.html
http://www.cplusplus.com/reference/vector/vector/
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_element.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_b_s_t_element.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_element_visualizer.html


LinkVisualizer	documentation

EarthquakeUSGS	documentation

http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_link_visualizer.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_earthquake_u_s_g_s.html


Assignment	6	-	Square	Fill
Goals
The	purpose	of	this	assignment	is	to	learn	to

1.	 Manipulate	a	ColorGrid	object.
2.	 Generate	colorful	squares

You	will	generate	a	visualization	that	looks	like	that!

Programming	part
Task

You	will	be	drawing	Square	Fillusing	the	following	logic:	(examples	provided	below.)

1.	 Start	with	an	empty	canvas.
2.	 Generate	a	random	point	that	has	not	been	painted	yet.	Paint	it,	that	is	a	square	of

dimension	0.
3.	 If	the	outer	layer	of	the	square	has	not	been	painted	yet	(aka,	if	none	of	the	pixel	of	the

outer	layer	has	been	painted)
4.	 Paint	it	and	go	to	the	next	layer.
5.	 Keep	painting	layers	until	you	reach	the	border	of	the	image,	or	one	of	the	layer	has	a

painted	pixel.
6.	 Pick	a	new	random	point.

Basic

1.	 Open	your	scaffolded	code.
2.	 Plug	in	your	credentials.
3.	 Complete	the	TODOs	in	the	scaffoled	code.
4.	 Run	and	visualize	your	code

Build	Square	Fill

1.	 Plug	in	your	credentials

2.	 Observe	how	the	code	initizes	the	ColorGrid.	The	code	provides	a	variable	that
represents	a	pixel	is	free,	which	is	embedded	into	the	Color	objects	alpha	value.	This
allows	for	a	much	quicker	check	later	on	to	see	if	a	pixel	is	free,	you	may	refactor	this	if
you	do	not	wish	to	use	the	alpha	value	for	this	purpose.

3.	 Provide	the	code	necessary	to	generate	a	random	point	on	the	grid,	check	that	point	to
make	sure	it	is	free,	and	then	set	that	location	to	some	random	color.

4.	 An	example	snippet	is	provided	in	the	next	TODO	that	gives	an	example	of	how	to	set	up
some	int's	to	keep	track	of	each	layers	boundaries.	Ensure	that	these	points	are	not	out
of	bounds	before	continuing.

5.	 In	the	first	for	loop,	provide	the	logic	for	checking	each	point	on	the	current	layer	to
make	sure	it	is	free,	if	not	break	the	loops	to	generate	a	new	point	on	the	grid	to	start
from.

6.	 If	the	current	layer	has	no	collisions,	generate	a	random	color	and	then	begin	filling	in

http://bridges-cs.herokuapp.com/assignments/6/bridges_workshop


the	points	along	the	current	layer	with	the	generated	color.

7.	 Run	and	visualize	the	code.

Help

for	Java

ColorGrid	documentation

Color	documentation

Bridges	class	documentation

for	C++

ColorGrid	documentation

Color	documentation

DataSource	documentation

Sample	Output

http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_color_grid.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_color.html
http://bridgesuncc.github.io/doc/java-api/current/html/namespacebridges_1_1base.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_color_grid.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_color.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/namespacebridges_1_1_data_source.html#details


Assignment	7	-	Grid	Lyrics
Goals
The	purpose	of	this	assignment	is	to	learn	to

1.	 Access	lyrics	data	through	BRIDGES.
2.	 Manipulate	a	ColorGrid	object.
3.	 Show	repetition	patterns	in	songs.

You	will	generate	a	visualization	that	looks	like	that!

Programming	part
Task

In	this	assignment,	the	objective	is	to	pull	a	song	from	Bridges,	split	the	lyrics	into	individual
words,	and	compare	each	word	against	every	other	word	to	check	for	repetition.

From	these	lyrics,	you	will	be	building	a	matrix,	or	a	ColorGrid	in	this	case,	where	every	row
and	every	column	represents	a	sequential	word	in	the	song's	lyrics.

Upon	finding	repetition,	you	will	be	setting	the	pixel	at	that	location	to	a	color	of	your	choice
at	that	point	in	the	grid.

Basic

1.	 Open	your	scaffolded	code.
2.	 Plug	in	your	credentials.
3.	 Complete	the	TODO's.
4.	 Run	and	visualize	the	code.

Build	a	ColorGrid

1.	 Plug	in	your	credentials.
2.	 Think	of	any	song	which	contains	words.
3.	 Query	Bridges	for	said	Song.	For	example

in	Java

	Song	mySong	=	Bridges.getSong("My	Favorite	Song",	"Optional	Artist	String");	
	String	lyrics	=	mySong.getLyrics();

in	C++

	Song	mySong	=	DataSource::getSong("My	Favorite	Song",	"Optional	Artist	String");	
	auto	lyrics	=	mySong.getLyrics();

4.	 Pass	these	lyrics	through	the	provided	helper	function,	which	will	clean	up	and	split	the
lyrics	into	an	array	of	squeaky	clean	Strings.

5.	 Initialize	a	ColorGrid	with	the	dimensions	the	size	of	the	array	returned	from	the	helper
function.

6.	 Iterate	over	the	split	lyrics	array,	checking	to	see	if	there	is	any	repetition.	For	example,
if	word	1	is	the	same	as	the	word	6,	you	would	color	the	pixel	at	(1,	6),	and	later	on	at	(6,

http://bridges-cs.herokuapp.com/assignments/7/bridges_workshop


1).

7.	 After	filling	out	your	grid,	set	it	as	the	data	structure	on	your	Bridges	object,	and	run
the	code.

Help

for	Java

ColorGrid	documentation

Color	documentation

Song	documentation

Bridges	class	documentation

for	C++

ColorGrid	documentation

Color	documentation

Song	documentation

DataSource	documentation

http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_color_grid.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_color.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1data__src__dependent_1_1_song.html
http://bridgesuncc.github.io/doc/java-api/current/html/namespacebridges_1_1base.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_color_grid.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_color.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_song.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/namespacebridges_1_1_data_source.html#details


Assignment	8	-	Priority	Queue	Book
Goals
The	purpose	of	this	assignment	is	to	learn	to

1.	 Access	Shakespear's	work	with	BRIDGES
2.	 Write	your	own	tree	based	data	structure:	A	Binary	Min-Heap

You	will	generate	a	visualization	that	looks	like	that!

Programming	part
Task

The	purpose	of	this	assignment	is	to	build	a	MinHeap	in	BRIDGES	represented	as	a	binary
tree	(as	opposed	to	the	more	common	array	representation	of	a	heap)

Recall	that	as	a	binary	tree,	a	heap	defined	recursively	as	a	root	and	two	subheaps.	The
invariant	of	a	min	heap	is	that	the	root	of	any	heap	should	have	a	lower	(or	equal)	key	than
any	node	contained	in	the	heap.

Getting	Started

1.	 Open	your	scaffolded	code.
2.	 Plug	in	your	credentials.
3.	 Observe	the	MyHeapElement	class	that	extends	BRIDGES's	BinTreeElement.
4.	 Observe	the	MyHeap	class	that	provide	Min	Heap	features.

Build	a	Binary	Min	Heap

1.	 Write	the	insert	function	in	MyHeap.	There	are	todos	to	guide	you.

The	algorithm	for	inserting	in	a	heap	is	as	follows.	(This	algorithm	ignores	that	there	is	a	key
and	a	value.)	Note	that	it	uses	information	about	the	size	of	the	subheaps	being	stored	at
each	node	of	the	heap.

Heap	{
		Key
		HeapLeft
		SizeHeapLeft
		HeapRight
		SizeHeapRight
}

insert	(Heap	h,	k)	{
		if	(h	is	empty)
				return	makenewheap	(k)

		if	(k	<	h.Key)
				swap	k	and	h.Key

		if	(SizeHeapLeft	<	SizeHeapRight)
				//push	left
				SizeHeapLeft	=	SizeHeapLeft	+	1
				HeapLeft	=	insert	(h.HeapLeft,	k)
		else
				//push	right
				SizeHeapRight	=	SizeHeapRight	+	1

http://bridges-cs.herokuapp.com/assignments/8/bridges_workshop


				HeapRight	=	insert	(h.HeapRight,	k)

		return	h
}

If	you	have	time

1.	 Use	all	of	Shakespeare's	works.
2.	 Change	the	location	of	the	insert	and	pop	in	the	main	function	to	keep	only	the	100	most

occuring	words	in	the	heap	at	any	time.
3.	 Style	the	heap	so	that	words	with	more	than	1000	occurences	are	highlighted.

Help

for	Java

Color	documentation

BinTreeElement	documentation

Shakespeare	documentation

Bridges	class	documentation

for	C++

Color	documentation

BinTreeElement	documentation

DataSource	documentation

Shakespeare	documentation

http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_color.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_bin_tree_element.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1data__src__dependent_1_1_shakespeare.html
http://bridgesuncc.github.io/doc/java-api/current/html/namespacebridges_1_1base.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_color.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_bin_tree_element.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/namespacebridges_1_1_data_source.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_shakespeare.html

