
Mountain	Paths	-	Determining	a	path	of	low	elevation
through	a	mountain
Goals
1.	 Working	with	2D	images	of	elevation	maps
2.	 Understanding	Greedy	algorithms	and	its	application	to	a	real-world	application
3.	 CS	concepts:	2D	array	addressing,	greedy	algorithms

Source
This	assignment	is	adapted	from	a	**Nifty	assignment	from	2016	proposed	by	Baker	Franke.	See	**Source

Description
You	are	given	elevation	data	of	a	mountainous	region	in	the	form	of	a	2D	array	of	integers	(see	example	image	below	of
one	of	the	datasets).	Your	goal	is	to	find	a	path	that	takes	you	through	the	points	with	the	lowest	elevation	changes,	in
an	effort	to	minimize	the	overall	effort	in	walking	through	the	path.	For	this	you	will	use	a	`greedy'	approach	and	make
local	decisions	in	determining	the	successive	points	in	the	path.

Input	gray	scale	image	of	a	terrain	with	gray	shades	mapped	to	elevation.	Elevation	ranges	from	low	(dark	shades)	to
high	(lighter	shades)

The	image	above	shows	a	mountainous	region;	lighter	regions	are	higher	elevation,	and	the	red	line	shows	the	path
taken	by	a	walker.

Algorithm	To	Determine	the	Path:

The	figure	above	(reproduced	from	**Nifty)	illustrates	4	different	cases	for	making	a	decision	in	determining	the	next
point	in	the	path.

You	will	use	a	greedy	strategy	to	determine	successive	points	along	the	path.	Figure	above	shows	how	the	algorithm

http://nifty.stanford.edu/
http://nifty.stanford.edu/2016/franke-mountain-paths/
http://nifty.stanford.edu/

applies	the	greedy	strategy	to	a	pixel	(with	grayscale	values	shown).	The	algorithm	looks	to	the	3	choices	and	picks	the
pixel	that
causes	the	smallest	change	(least	effort	to	walk).	The	idea	is	to	start	from	an	edge	of	the	image	(say	the	leftmost
column),	then	make	moves	based	on	the	pixels	to	the	right,	each	time	choosing	the	pixel	that	results	in	the	smallest
change.	Your	goal	is	to	reach	the	right	edge	of	the	image.

Tasks
1.	 get	dataset,	visualize	as	an	image	You	will	use	BRIDGES	to	define	a	lat/long	range	(rectangular	bounding	box	of

your	choice)	to	access	the	elevation	data	(returned	in	an	object	containing	the	elevation	values).	You	will	need	to
calculate	maximum	elevation	value,	as	you	will	need	to	scale	the	values	to	the	(0-255)	range	to	display	the	image
in	a	ColorGrid.	(Backup	plan	is	to	read	from	a	PPM	image,	if	there	are	any	issues	accessing	data	from	an	external
source)

2.	 Display	the	image	using	BRIDGES.	Once	you	have	acquired	the	dataset,	scale	the	values	to	0-255	range	and
convert	that	to	an	integer	(divide	each	value	by	the	largest	and	scale	to	255).	Use	the	BRIDGES	ColorGrid	class	to
hold	the	image.	This	can	then	be	visualized	directly	in	BRIDGES.	Check	the	tutorial	for	the	ColorGrid	object	that
illustrates	the	calls	needed	for	visualization.	The	ColorGrid	class	has	the	methods	to	load	colors	for	each	pixel	and
can	take	separate	R,G,	B	and	Alpha	components.	For	grayscale	images	(like	the	one	above),	R=G=B.

3.	 Compute	the	Lowest	Elevation	Path.	Implement	the	greedy	algorithm	on	the	image.
Choose	a	pixel	in	the	left	most	column,	somewhere	in	the	middle	region.	Your	program	will	determine	the	points	in
the	path	that	exhibit	the	smallest	change	(see	figure	above)	in	elevation	and	draw	this	path	in	a	distinct	color	(like
red).	Pixels	in	the	path	will	have	their	values	changed	to	this	color	(for	instance,	use	(255,	0,	0)	for	red.
As	you	compute	these	low	elevation	points,	modify	your	color	grid	to	draw	the	red	pixels.
You	need	to	keep	track	of	the	pixel	addresses	and	the	image	height	and	width,	so	that	you	dont	go	past	the
boundaries	of	the	dataset	(grid).	Note	that	if	you	are	on	the	boundaries	of	the	grid,	your	choices	will	be	reduced.

4.	 Display	the	image.	Again,	use	BRIDGES	to	display	your	final	image	with	the	chosen	path	(see	example	above).	You
can	have	a	simple	User	Interface	to	specify	the	starting	point	and	rerun	your	program	to	display	different	paths.

Variants
One	can	make	variants	of	this	assignment.	Indeed,	the	greedy	algorithm	presented	above	is	a	heuristic;	it	does	not
return	the	path	that	sees	the	lowest	change	of	elevation	across	the	entire	mountain.	It	only	makes	a	local	choice.	Here
are	some	possibilities:

1.	 One	can	find	the	path	that	always	goes	right	and	that	minimizes	the	total	change	of	elevation	using	Dynamic
Programming.	Propose	a	Dynamic	Programming	algorithm,	and	implement	it	to	highlight	the	right-going	path	of
minimal	total	change	of	elevation.

2.	 If	one	does	not	always	go	right,	then	the	problem	is	akin	to	a	Shortest	Path	problem.	Adapt	Dijkstra's	algorithm
and	implement	it	to	highlight	the	path	of	least	change	of	elevation.

3.	 Graduate	students	can	consider	the	problem	of	optimizing	simultaneously	the	distance	traversed	and	the	total
change	of	elevation	as	a	bi	objective	optimization	problem.

Additional	Help:
BRIDGES	Team:	Contact	the	BRIDGES	team	for	any	issues	with	the	BRIDGES	API.	This	is	an	active	project.

for	Java

ElevationData	Documentation

DataSource

ColorGrid	documentation

Color	documentation

Bridges	class	documentation

for	C++

ElevationData	Documentation

DataSource

ColorGrid	documentation

http://bridgesuncc.github.io/
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1data__src__dependent_1_1_elevation_data.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1connect_1_1_data_source.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_color_grid.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_color.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1connect_1_1_bridges.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1dataset_1_1_elevation_data.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_data_source.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1datastructure_1_1_color_grid.html

Color	documentation

Bridges	Class	documentation

for	Python

Elevation	Data	Documentation

ColorGrid	documentation

Color	documentation

Bridges	documentation

DataSource

http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1datastructure_1_1_color.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_bridges.html
http://bridgesuncc.github.io/doc/python-api/current/html/classbridges_1_1data__src__dependent_1_1elevation_1_1_ele_data.html
http://bridgesuncc.github.io/doc/python-api/current/html/classbridges_1_1color__grid_1_1_color_grid.html
http://bridgesuncc.github.io/doc/python-api/current/html/classbridges_1_1color_1_1_color.html
http://bridgesuncc.github.io/doc/python-api/current/html/classbridges_1_1bridges_1_1_bridges.html
http://bridgesuncc.github.io/doc/python-api/current/html/data__source_8py.html

