
Real-World Assignments at Scale to Reinforce
the Importance of Algorithms and Complexity∗

Jason Strahler1, Matthew Mcquaigue1, Alec Goncharow1

David Burlinson1, Kalpathi Subramanian1

Erik Saule1, Jamie Payton2

1Computer Science, UNC Charlotte
{jstrahl1, mmcquaig, agoncha1, dburlins, krs, esaule}@uncc.edu
2Computer and Information Sciences, Temple University

payton@temple.edu

Abstract

Computer Science students in algorithm courses often drop out and
feel that what they are learning is disconnected from real life program-
ming. Instructors, on the other hand, feel that algorithmic content is
foundational for the long term development of students. The disconnect
seems to stem from students not perceiving the importance of algorithmic
paradigms, and how they impact performance in applications.

We present the point of view that by solving real-world problems
where algorithmic paradigms and complexity matter, students will be-
come more engaged with the course and appreciate its importance. Our
approach relies on a lean educational framework that provides simplified
access to real life datasets and benchmarking features. The assignments
we present are all scaffolded, and easily integrated into most algorithms
courses. Feedback from using some of the assignments in various courses
is presented to argue for the validity of the approach.

∗Copyright ©2018 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1



1 Introduction

Algorithms courses are generally a cornerstone of computer science bachelor’s
degree programs. They introduce concepts critical to CS students’ theoretical
foundations, and are a significant part of the core curriculum recommended
by ACM in their 2013 CS guidelines [9]. Meanwhile, students often see these
classes as being overly theoretical; they express frustration that calculating
complexity, proving correctness, and studying obscure paradigms are the focus
of the entire class. While some mathematically-minded students will appreciate
the content, most perceive the class as unimportant. As such, the failure rate
in algorithms classes is often high, and they are known in many universities for
being the weed-out class.

Runtime efficiency of algorithms is a hard topic to teach. Gal-Ezer and Zur
showed that students have many misconceptions about runtime efficiency, and
wrote “Concepts like big-O..., are known to be difficult to conceive and difficult
to teach and learn” [6]. Misconceptions in algorithms courses are common and
have received some academic attention [4]. While some efforts were made to
design tools to help students understand algorithms [11, 7], little effort has
focused on getting students engaged in the topic.

We present extensions to the BRIDGES framework which are designed
to help engage students with the content in algorithms courses. In particu-
lar, BRIDGES provides access to real-world data which can be processed by
algorithms to solve real-life problems. Algorithms can be visualized in mul-
tiple ways to improve students’ understanding of how a particular algorithm
works. Moreover, our framework provides larger scale instances which enable
performing run-time benchmarking of algorithms. These different features en-
able students to develop a keener understanding of why algorithmic content is
relevant to them and their career. The BRIDGES framework and scaffolded
assignments are available online (http://bridgesuncc.github.io/).

2 Related Works

What Makes Students Engaged. Strategies for engagement seem to come
from two complementary approaches. Teaching style engagement strate-
gies focuses on how a course is taught and managed. Active learning techniques
have become popular in recent years to promote student engagement and can
include any combination of lab-based instruction, flipped classrooms, gamifi-
cation, peer-learning, and use of multimedia content [8]. Content based en-
gagement strategies present the topics of the course using learning materials
that capture the interest of the students. This is a common thread in the popu-
lar assignment repositories such as Nifty Assignments [14], EngageCSEdu [12],

2



and game-themed assignments [3]. Real-world and large datasets in course
projects have been demonstrated to successfully engage students [1], in con-
trast to tiny contrived examples.

What Algorithms Courses Typically Look Like. Looking at topics and
learning outcomes in curriculum guidelines [9], algorithms textbooks [2], and
concept inventories of algorithms courses [4] paints a picture of a typical algo-
rithms course. Algorithms courses typically start with a discussion of runtime
estimations, using complexity notations like Big Oh and Big Theta, followed by
methods for proving algorithm correctness, and computing runtime complexity.
Courses may look at advanced data structures such as trees, graphs, or hash
tables to define problems, or as a way to solve problems in the class. Algorithm
design techniques such as brute force, divide and conquer, greedy algorithms
and dynamic programming are introduced to solve a variety of problems. Ad-
vanced courses may contain discussions of calculability, NP-Completeness and
methods such as Branch and Bound methods, and approximation algorithms.

Existing Educational Efforts in Algorithms Courses have been aimed
at visualizing what a data structure or algorithm looks like [13, 10]. These
efforts have focused on creating a visually interactive way to show and teach
algorithms to students, and was shown to be effective at learning algorithmic
concepts [5]. There have also been efforts to bring real world map data into
algorithm courses [15], for use in sequential search, graph traversal, Dijkstra’s
algorithm, and convex hulls. This effort shows an interest in bringing real
world data into algorithm courses instead of using synthetic or contrived data.

3 The BRIDGES system

The BRIDGES system enables assignments relevant to the goals of introduc-
tory CS courses, including algorithms courses. The system provides bindings
for Java, C++, and Python based on a commonly used object hierarchy. Out-
put from assignments are highly visual and can easily be shared with friends
and family.

Scalable Dataset Access. A simple API provides access to external data
sources such as USGS Earthquake data, Wiki Data, IMDB actor/movies, Ge-
nius’ Song Lyrics, and OpenStreet Maps. Usually a single function call returns
a set of easy to understand objects. Assignments that leverage these interesting
datasets seem more real and relevant. When possible, these data are accessed
live. BRIDGES plays the intermediary, dealing with credential issues, access
policies, etc. Because the data is live and real, the datasets can be as large as

3



Assignment Topics Engagement
Plotting Com-
plexity

Order of Growth Visual Output, use own machine
spec

Sorting Imple-
mentation

Order of Growth, Divide/Conquer, Decrease/Con-
quer, Heaps

Visual Output, Real Data

Book Distance Order of Growth, Trees, Hash Maps Visual Output, Real Data Analy-
sis, Interest:literature

Mountain Path Order of Growth, Optimization, Dynamic Program-
ming, Shortest Path, Greedy Algorithms, Problem
Modeling

Visual Output, Real Data, Real
Problem, Interest:hiking

Routing in a City Order of Growth, Shortest Path Visual Output, Real Data, Real
Problem, Choose own city, Inter-
est:social

Hollywood Anal-
ysis

Order of Growth, Graphs, BFS, Graph Construc-
tion

Visual Output, Real Data Analy-
sis, Interest:entertainment, Fun

Table 1: A set of assignments using real data, real problems to teach algorithms.

they need to be. One could access a map of every street in the United States
from Open Street Map or get information on every single movie ever released.
To minimize network transfers and computational costs, the data is cached,
both within the BRIDGES infrastructure and on the student’s machine. The
expectation is that having data at that scale will let students explore different
problems, see practical applications as part of their studies, and realize that
problems can be at large scale without appearing to be made up.

Performance and Benchmarking Features. Algorithm teaching tools
typically lack elements to understand questions related to the runtime of al-
gorithms. BRIDGES provides features to plot performance charts. Elaborate
visualizations of complexity [16] have been designed for trained algorithm ex-
perts, but BRIDGES uses classic runtime plots where algorithms are associated
with pairs (size, time) displayed using a classic line chart (See Figure 1b for
a sample output). Secondly, BRIDGES enables automatic benchmarking of
particular problems. Take sorting of an array as an example. The student-
implemented sorting function is passed to a benchmarking object that will run
the algorithm at different sizes to extract performance information. When pos-
sible, the benchmarks are run using real-world data, to avoid students’ feeling
that the problems have been scaled up for their own sake.

4 A Set of Engaging and Scalable Algorithm Assignments

Next we present a set of assignments leveraging BRIDGES which are appro-
priate for an algorithms course. Table 1 presents concisely the assignments,
the topics they map to, and their engagement characteristics. The assign-
ments cover most topics in an algorithm class, often use real data, perform
a real analysis, or solve a real life problem. The assignments are linked to
areas of interest usually popular with students. Assignments scaffolded for
C++, Java, and Python are accessible online (http://bridgesuncc.github.
io/newassignments.html).

4



(a) Binary Search Trees can be used to
sort (b) Timing experiment

Figure 1: Sorting in BRIDGES

The Classic Plotting of Complexity consists in plotting the cost of a few
algorithms given their precise instruction count for given machines and shows
that an algorithm with higher complexity running on a much faster machine will
still be slower than an algorithm with a better complexity running on a smaller
machine. For instance, the runtime an algorithm using 104n operations and an
other one using 5∗104n operations on a machine at 1MHz would be much faster
than a machine at 100MHz running an algorithm taking 102n2 operations.
Engagement comes from the visual output, which is easy to understand and
from personalizing the assignment, by using a student’s own machine.

The Classic Sorting Assignment consists in implementing classic sort-
ing algorithms. Insertion sort and selection sort are quadratic decrease-and-
conquer algorithms often covered when talking about arrays or correctness.
While Merge sort and Quick sort are often used to show an Θ(n log n) algo-
rithm using a divide-and-conquer approach, sorting by leveraging a tree data
structure such as a Heap or a Binary Search Tree can also be used.

BRIDGES can be used to understand how the sorting happens across dif-
ferent sorting algorithms by visualizing the current state of the algorithm.
Figure 1a shows a Binary Search Tree that can be then in-order traversed to
extract a sorted array. BRIDGES provides unit testing and benchmarking of
the algorithms. Figure 1b shows the performance of insertion sort and bubble
sort compared to Java’s standard sorting function.
Engagement comes primarily from the visualization of the algorithm and of
the runtimes. Real data can be used for what is being sorted: Figure 1a,
for instance, shows sorting using the magnitude of recent Earthquakes. But
without a more precise scaffold, it can appear artificial to students.

5



Computing Book Distance is inspired by Natural Language Processing.
The idea is to compare how close books are using a bag-of-word model. For
a particular book, one can compute how many times each word appears and
normalize that count to form a vector representation of the book (maybe the
word “dog” appears 1% of the time.) These frequency vectors can be leveraged
to compare books, for instance, by using the L1 distance or a cosine similarity
function. This analysis will highlight that books from a particular author are
more similar than books from different authors.

The core of the assignment is the implementation of a Dictionary which
can be done using different data structures: array, linked list, binary search
tree or a hash map. The application in the assignment is counting words and
computing distance between sparse vectors. BRIDGES provides access to data
for this assignment through Project Gutenberg. Using small Shakespearean
poems is very good for debugging. But computing the distance between larger
books will drive home the importance of complexity. A comparison of all the
works of Shakespeare against all the works of Mark Twain will take hours if
one uses a Θ(n) implementation of Dictionary such as an unsorted array while
it will take only seconds using an O(1) hash maps.
Engagment. The Dictionary can be visualized and debugged using BRIDGES.
The application is real: this type of analysis was conducted to identify who
wrote the Federalist Papers. Students with interests in literature will appreci-
ate this assignment and plug in their favorite classic authors.

Optimizing Path through a Mountain. The mountain path assignment
first appeared as a Nifty assignment [14]. Given an elevation map (image)
the task is to find the lowest cost path, from one end of the image to the
other, where the cost is defined as the sum of difference in elevation between
consecutive pixels in the path. A simple greedy approach is used to make local
decisions and the selected path of pixels is drawn in color (shown in Figure 2).

Figure 2: Path of Least Elevation
(Greedy)

Figure 3: Map of Minneapolis, MN
colored by distances to the center of
the map.

6



This problem from Nifty is particularly good to teach algorithms for op-
timization problems. The algorithm is a greedy heuristic. However, one can
easily build a variant where you always have to go right, but are allowed to
choose whether to go up-right, straight-right, or down-right by looking at the
entire map. This variant can be solved using dynamic programming or a brute
force method. With a large map, the difference in computation time between
the greedy heuristic, and the optimal algorithm will be obvious and enable dis-
cussions of time-quality tradeoff. A second variant is to go from a pixel to any
of the 8 neighbors and the problem becomes a classic shortest path problem.
Engagement. The output is visual, and addresses a real problem using real
data. It will echo well in students who love hiking. History-buffs may be
interested in figuring out where Hannibal should have crossed the Alps, or
whether Xerxes the Great had to fight the Greek army at Thermopylae. Fi-
nally, BRIDGES lets students choose the elevation map they will use in the
assignment, for instance, their own campus, city, or a favorite hiking area.

Scalable Routing through a City. Implementing Dijkstra’s algorithm
with best case complexity is difficult because it relies on a Fibonacci Heap [2].
Often implementations seen in algorithms courses use a regular Binary Heap
which has a higher complexity. This is not a major problem when the map is
small as the difference is hard to notice. BRIDGES provides access to Open
Street Map data and enables students to access maps of the continental US
for any latitude/longitude bounding box at different resolutions (the graph
of Minneapolis is shown in Figure 3). This enables BRIDGES to benchmark
automatically Dijkstra’s implementation.
Engagement. Students get to choose the map they will use, can relate to the
need for routing in a city, and get the feeling they are solving a real problem.

Figure 4: Bacon Number

Analysis of Hollywood Movies. Computing
the Bacon Number of an actor consists in figur-
ing out how many movies away an actor is from
Kevin Bacon by only going from actor to one of
his/her movie and from a movie to one of the ac-
tors that played in it. Listing the actors and movies
in the chain is a game known as the “Six Degrees
of Kevin Bacon”. Provided a graph composed of
movies and actor with edges if the actor played in
the movie, computing the Bacon number of an ac-
tor is achieved with a BFS traversal.

BRIDGES enables accessing a toy actor-movie graph from IMDB with
about 2000 edges. This graph can be styled to highlight the shortest path

7



between an actor and Kevin Bacon (see Figure 4).
It is also possible to access all the data of all English movies since the

1910s. The students will build graphs of about 1M edges and BRIDGES en-
ables to easily query particular time intervals. This makes the dataset very
versatile, permitting students to study who was the most central actor for a
particular decade; this calculation requires computing a BFS from each actor
in the dataset. While a single BFS computation takes about 0.5 sec. on a 1M
edge graph, calculating BFS from all vertices takes on the order of a day, thus
emphasizing that calculation time compounds quickly at real world scales.
Engagement. The analysis that students perform is real and a big data
problem, and a dataset students are often interested in is explored visually.

5 Results: Student Reactions

We deployed several of the above projects in courses on algorithms, data
structures and object oriented systems. We obtained student feedback on the
projects through reflection and project surveys, performed after each project.
The reflection survey gives students the chance to describe their learning expe-
riences and specifically what they liked and did not liked about the assignment.
Other questions focused on engagement, completion time, preparedness, assign-
ment difficulty, and if the assignment increased their interest in computing.

Book Distance Project. The project was assigned in a data structures class
in Fall 15 as a four-part project. Student started by writing the book distance
comparison using a provided Dictionary implementation using unsorted arrays,
then they implemented a Dictionary object using sorted arrays, binary search
trees, and hash maps. They computed distance between books of different sizes.
No formal reflection or engagement quiz was given. The following comments
come from the notes of the instructor (an author of this paper).

Students initially felt that the implementing the application was difficult,
but eventually appreciated seeing distances between books. Computing the
distances using sorted arrays was very slow and students computed only some
of the distances. Using the BST, students were able to compute all the pair-
wise comparisons. Many students were surprised at the speed of hash maps,
and commented on how they “killed their laptop” on computation that was
unnecessary with better data structures.

Mountain Path. We only considered the greedy algorithm. BRIDGES was
used to display the input elevation image and the final path. The project was
given in Fall 18, Spring 19 and Spring 20 in an object oriented programming
course. Students found the project highly engaging (96%, 100%,85%) and

8



difficult (85%, 74%, 78%). Short answer responses also indicated difficulties
with programming concepts, clarity of instructions, and also satisfaction with
the assignment challenges. Students really seemed to enjoy the project, with
remarks such as ‘excellent practical example of the greedy algorithm’, ‘very
challenging and learned quite a bit’, ‘at first ... intimidated, ... after thoroughly
reading... I felt a bit more confident’, ’liked the assignment challenged my
programming ability’

Bacon Number. The project was given to an algorithms course in Spring
16 and Fall 17 to an algorithms course. Only the first part of the project was
given to the students, to implement the Bacon Number project on the 2000
node graph. Students found the project to be difficult (57% vs. 30%, 45% vs.
9%) but increased their interest in computing (51% vs 30%), and felt it was
relevant to their career goals (48% vs. 16%, 54% vs. 18%)

Students were excited about the visual output “This is the first time in ALL
of comp sci, that we could actually visually see the data structures”, interest
in lowering runtime: “an individual [may be] required to work with a large
data structure and ... to effectively traverse [it] in a reasonable computation
time”, liked working with graphs, “graphs are more fun/interesting” and found
them relevant, “Bfs is an extremely useful and popular algorithm and graphs
are used frequently in computer science and tech industry”.

6 Conclusion

This paper presents strategies to engage students with the content of typical
algorithms courses. The main strategy is to assign course projects that are or
look like real-life problems and rooted in domains students care about and use
visualization. The data used in the projects are extracted from live sources,
grounding the projects in reality. We presented 6 assignments/projects that
cover most of the content of a typical algorithms course. Three of the projects
were assigned to students in various courses. The projects were deemed hard
but were eventually perceived positively by the students. A threat to the
validity of this work is that the projects were not all in a single algorithms
course, and one probably one would not assign all of them in such a course.
We will address that in the future by performing such an intervention and
conducting formal studies.

Acknowledgment

This material is based upon work supported by the National Science Founda-
tion under grant no. DUE-1726809 and CCF-1652442.

9



References

[1] David Burlinson, Mihai Mehedint, Chris Grafer, Kalpathi Subramanian, Jamie
Payton, Paula Goolkasian, Michael Youngblood, and Robert Kosara. BRIDGES:
A system to enable creation of engaging data structures assignments with real-
world data and visualizations. In Proc. ACM SIGCSE 2016, pages 18–23, 2016.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, third edition edition, 2009.

[3] Peter Drake and Kelvin Sung. Teaching introductory programming with popular
board games. In Proc. of ACM SIGCSE, pages 619–624, 2011.

[4] Mohammed F. Farghally, Kyu Han Koh, Jeremy V. Ernst, and Clifford A. Shaf-
fer. Towards a concept inventory for algorithm analysis topics. In Proc. SIGCSE,
pages 207–212, 2017.

[5] Mohammed F. Farghally, Kyu Han Koh, Hossameldin Shahin, and Clifford A.
Shaffer. Evaluating the effectiveness of algorithm analysis visualizations. In
Proc. SIGCSE, pages 201–206, 2017.

[6] Judith Gal-Ezer and Ela Zur. The efficiency of algorithms—misconceptions.
Computers and Education, 42(3):215 – 226, 2004.

[7] Michael T. Goodrich and Roberto Tamassia. Teaching the analysis of algorithms
with visual proofs. SIGCSE Bull., 30(1):207–211, March 1998.

[8] Mark Guzdial. A media computation course for non-majors. In Proceedings of
the ITICSE 2003, pages 104–108, 2003.

[9] Joint Taskforce on ACM Curricula. Computer Science Curricula 2013: Cur-
riculum Guidelines for Undergraduate Degree Programs in Computer Science.
ACM/IEEE Computer Society, 2013.

[10] Jeff Lucas, Thomas L. Naps, and Guido Rößling. Visualgraph: A graph class de-
signed for both undergraduate students and educators. SIGCSE Bull., 35(1):167–
171, January 2003.

[11] Joan M. Lucas. Illustrating the interaction of algorithms and data structures
using the matching problem. In Proc. SIGCSE, pages 247–252, 2015.

[12] Alvaro Monge, Beth A. Quinn, and Cameron L. Fadjo. EngageCSEdu: CS1 and
CS2 materials for engaging and retaining undergraduate CS students. In Proc.
of ACM SIGCSE, pages 271–271, 2015.

[13] Thomas L. Naps, James R. Eagan, and Laura L. Norton. JHAVÉ - an environ-
ment to actively engage students in web-based algorithm visualizations. In Proc.
SIGCSE, pages 109–113, 2000.

[14] Nick Parlante. Nifty assignments, 2018.
[15] James D. Teresco, Razieh Fathi, Lukasz Ziarek, MariaRose Bamundo, Arjol

Pengu, and Clarice F. Tarbay. Map-based algorithm visualization with METAL
highway data. In Proc. SIGCSE, pages 550–555, 2018.

[16] Jeyarajan Thiyagalingam, Simon Walton, Brian Duffy, Anne Trefethen, and Min
Chen. Complexity plots. In Proc. EuroVis, pages 111–120, 2013.

10


