
BRIDGES: A System to Enable Creation of Engaging Data
Structures Assignments with Real-World Data and

Visualizations

David Burlinson, Mihai Mehedint, Chris Grafer, Kalpathi Subramanian, Jamie Payton,
Paula Goolkasian

University of North Carolina at Charlotte
{dburlins, mmehedin, cgrafer1, krs, payton, pagoolka}@uncc.edu

Michael Youngblood
PARC, A Xerox Company

Michael.Youngblood@parc.com
Robert Kosara
Tableau Research

rkosara@tableau.com

ABSTRACT
Although undergraduate enrollment in Computer Science
has remained strong and seen substantial increases in the
past decade, retention of majors remains a significant con-
cern, particularly for students at the freshman and sopho-
more level that are tackling foundational courses on algo-
rithms and data structures. In this work, we present BRIDGES,
a software infrastructure designed to enable the creation of
more engaging assignments in introductory data structures
courses by providing students with a simplified API that
allows them to populate their own data structure imple-
mentations with live, real-world, and interesting data sets,
such as those from popular social networks (e.g., Twitter,
Facebook). BRIDGES also provides the ability for students
to create and explore visualizations of the execution of the
data structures that they construct in their course assign-
ments, which can promote better understanding of the data
structure and its underlying algorithms; these visualizations
can be easily shared via a weblink with peers, family, and
instructional staff. In this paper, we present the BRIDGES
system, its design, architecture and its use in our data struc-
tures course over two semesters.

Keywords
algorithm, data structure, visualization, engagement

1. INTRODUCTION
Over the past several years, enrollment in computer sci-

ence undergraduate degree programs has been increasing at

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’16, March 02-05, 2016, Memphis, TN, USA
c© 2016 ACM. ISBN 978-1-4503-3685-7/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2839509.2844635

rates ranging from 6-11% [9]. Despite this increase, reten-
tion of CS majors remains a critical concern, especially at
the freshmen/sophomore levels, with attrition rates of up to
66% [8]. While the factors that motivate changing majors
are many and varied [8], strategies to increase retention are
crucial to meet the national needs for graduates that can
contribute to a robust and innovative twenty-first century
workforce.

Demonstrating a connection between computing and the
real world has the potential to increase students’ motiva-
tion and interest in computing; grounding teaching in fa-
miliar, concrete, and relevant examples has been shown to
improve learning [4] and has a positive effect on the retention
of computing majors, particularly for women students [7]. In
practice, however, there is little support for educators who
want to incorporate this kind of approach into introductory
computer science courses; for most students in introductory
computer science courses, there remains a disconnect be-
tween the students’ own everyday experiences with existing
information systems that address real-world problems and
the toy examples with small, uninteresting, synthetic data
sets they encounter in course assignments that are used to
teach students how data structures and algorithms work.

In this paper, we introduce the BRIDGES (Bridging
Real-world Infrastructure Designed to Goal-align, Engage,
and Stimulate) system, which (1) facilitates student access
to live, real-world data sets for use in traditional data struc-
tures programming assignments and (2) makes it possible for
students to view and verify (debug) their own implementa-
tions of data structures, by providing visualization capabil-
ities. The goal is to increase the engagement of students
enrolled in data structures courses in an effort to improve
retention of students in the computer science major. We
present the architecture of BRIDGES and sample projects
that can be enabled through the use of BRIDGES in a data
structures and algorithms course. We describe a study of the
application of BRIDGES in two semesters of a sophomore-
level course; results show that the majority of students in-
dicate that the BRIDGES-enabled assignments are relevant
to career goals and increased their interest in computing.

Figure 1: BRIDGES System. Based on a client-server ar-
chitecture; a user constructs data structure programs using
the BRIDGES client classes (Fig. 3) in Java or C++. The
data structure representation is sent to the server by the
client as a JSON string. After parsing and user authentica-
tion, the server stores the assignment on the MongoDB and
displays the data structure on a specific web link using D3.
The server also has interfaces to retrieve data from external
sources upon user requests for use in their programs.

2. THE BRIDGES SYSTEM
As illustrated in Fig. 1 the BRIDGES system is based on a

client-server model; the client consists of the needed infras-
tructure for students to implement all of the basic data struc-
tures (currently Java and C++ APIs are supported). At any
point, a representation of the constructed data structure can
be generated and transmitted to the BRIDGES server to
generate a visualization. The visualization will be displayed
on a specific web link provided to the user. The BRIDGES
server provides needed interfaces to data sources that make
it easy for the user to make data requests. The acquired
data (to be used by the user as part of course projects) is
also cached on a Mongo database. Finally the server main-
tains a gallery of projects created by the user that can be
shared. The visualization will appear on the specified web
page with some capabilities for interactive manipulation. All
projects are held in a database and the client will have access
to an interactive gallery under their BRIDGES account.

2.1 An Example BRIDGES Program
We begin with an example template of what a BRIDGES

program would look like. Fig. 2 shows the main calls made
from an example program and consists of the following steps.
The Bridges class encapsulates the details of the communi-
cation between the client and the server and uses additional
helper classes in its implementation.

• Initialization. This step creates a BRIDGES class
and takes several parameters, including an assignment
number, a user id (generated by the user when he/she
creates a BRIDGES account) and the corresponding
user name. These parameters are used in forming a
custom web link for the user’s data structure.

• Data Structure Construction. In this step, the
user constructs and manipulates any of the BRIDGES
supported data structures using the BRIDGES client
classes (see Section 2.2.1).

Figure 2: An Example BRIDGES program. Consists of an
initialization step to specify user name and id (for authen-
tication), assignment number. This is followed by user’s
construction of the data structure using BRIDGES client
classes. The final 2 steps involve specifying a handle to the
data structure (tree root, graph, head of a linked list, etc)
and initiating the visualization modules.

• Specification of Data Structure Type. This step
specifies the handle to the data structure that will be
transmitted to the BRIDGES server for visualization.
This can be the head of a linked list, root of a tree,
graph adjacency list, or array name.

• Visualization. This step results in the creation of
a JSON string representation of previously specified
data structure and its transmission to the BRIDGES
server using an HTTP post request. If this is success-
ful, a web link is returned to the user for viewing the vi-
sualization. The assignment is also stored in the Mon-
goDB that the user can subsequently access through
his BRIDGES account. This step can be repeated any
number of times: the data structure can be modified,
the handle respecified followed by visualization.

2.2 BRIDGES Design

2.2.1 BRIDGES Client
The BRIDGES client consists of a minimal set of building

blocks that are needed by students in a typical sophomore
level course on data structures: array, list, tree structures,
graph. The class structure is illustrated in Fig. 3, roughly
follows the description and implementation of Shaffer[16, 15]
contains the following components:

Element. This is the foundational class in BRIDGES. Ar-
rays, lists, tree and graph nodes are constructed using this
element. Elements have a unique id, a label (used in the
visualization), and visual properties (size, shape, opacity,
color). Elements can also be related to another element via
a link, as would be needed for trees, linked lists and graphs.
Links have attributes: color, thickness, and opacity. Ele-
ments are declared with a generic parameter, that can be
used to hold application specific data (Tweet, actor, movie,
etc)

Figure 3: BRIDGES Client. Consists of the basic building
blocks to construct data structures, such as arrays, linked
lists, binary trees and graphs. The visualizer classes affect
the visual attributes (color, opacity, size, thickness) of the
elements (nodes) and links, depending on the data structure.

SLElement. Derived from Element, SLelement represents
a singly linked element and has a link to the succeeding el-
ement, via a next pointer.

DLElement. Derived from Element, DLelement represents
a doubly linked element and has links to previous and suc-
ceeding elements, via prev and next pointers.

TreeElement. Derived from Element, TreeElement is a bi-
nary tree node, with links to its two children, via left and
right pointers.

BSTElement. Derived from TreeElement, augments the
TreeNode with key value; must be an orderable type.

GraphAdjMatrix. Implemented as a two dimensional hash
table, the graph supports vertices indexed by any orderable
type (int, float, string, etc).

GraphAdjList. Implemented as a hash table of vertices,
with each table entry pointing a singly linked list (of type
SLelement);

Array. Arrays represent a list of type Element and support
the normal indexing operations of arrays as defined in pro-
gramming languages; however, each element of a BRIDGES
array supports visual attributes.

Implementation. Implementations using the above class
structures closely follow the implementation examples in
[16, 15]. However, by using the object definitions above,
the basic data structure elements can now be augmented
with visual attributes that can be exploited by the visual-
ization modules. BRIDGES currently supports both Java
and C++ implementations. The Java implementation uses
Java Generics; while the C++ implementation uses C++
templates. Generic implementations make it possible to han-
dle real-world datasets where indexing by string (Twitter or
Facebook user name, for example) is needed for graph imple-
mentations, bypassing a remapping to integer vertex indices.

A second advantage is the ability to incorporate application
specific dataset as a generic parameter to the base classes.

2.2.2 BRIDGES Server
The BRIDGES server has the following functions:

• Access to Real-World Data. As described earlier,
APIs to real-world datasets such as social networks
(Twitter, Facebook) can be quite complex and be-
yond the scope of sophomore level CS students. Thus
BRIDGES provides an easy to use interface to acquire
data from external data sources. To date, implemented
interfaces to services include Twitter, RottenToma-
toes, and IMDB, and data from Twitter follower lists
and timelines from a few public accounts (ieeevis, twit-
terapi, wired, US geological survey, and earthquake)
have been incorporated directly into course projects.
Queried data from the various sources is cached in a
Mongo database for the sake of efficiency and data
reuse.

• Visualization. The BRIDGES server is responsible
for receiving data structure representations (in JSON
string format) from the client and generating a visual
representation (students will be provided a web link).
All such requests are authenticated, parsed and stored
in a database (MongoDB). Uploaded assignments can
be accessed with a direct url or via the user gallery
and can be made public or private, allowing users to
share some visualizations and hide others for later re-
view or modification. Visualizations of arrays, linked
lists, binary trees and graphs (node-link diagrams) are
supported by BRIDGES.

Implementation. The server-side implementation is a Node.js
application, utilizing Jade templating, a MongoDB database,
Javascript, and a variety of popular Javascript libraries, such
as D3[3], jQuery, and Underscore.js. The database is used
to keep a record of all users, projects, and cached datasets.

2.3 BRIDGES Intervention in Data Structures
Courses

In our CS program, students take the data structures
course at the beginning of their sophomore year, followed by
an algorithm analysis course. All BRIDGES projects were
assigned to students in the data structures course. Typical
enrollment in this course is around 50. The BRIDGES in-
tervention was performed in 1 section of the data structures
course in fall 2014 and Spring 2015.

2.3.1 Fall 2014
Three BRIDGES projects were assigned in the Fall 2014

semester:

• Queue: In this project students to implement and
test the Queue ADT, followed by using a live stream of
Earthquake Tweet data (US GIS earthquake Tweets).
Helper classes were provided to parse the quake data
to simplify the data processing tasks. Students had
to complete two tasks (a) Given a fixed size queue,
incoming tweet data were enqued; if the queue became
full, then the oldest tweets were dequed and snapshots
of the queue visualizations were to be demonstrated,
(b) Given a fixed size queue, incoming data items were
to be filtered by quake magnitude prior to entering

(a) Singly Linked List of IMDB dataset containing
1815 actor-movie pairs. Each node is a unique actor;
mousing over a node (not shown) displays a list of that
actor’s movies.

(b) Binary Search Tree of Earthquake Tweet Dataset
(US GIS), ordered by quake magnitude.

(c) Bacon Number Computation. Actor-Movie Graph
of an IMDB dataset containing 1815 actor-movie pairs.
Results of the Bacon number computation between
Denzel Washington and Kevin Bacon. The red nodes
and links display the path from Denzel Washington to
Kevin Bacon.

Figure 4: BRIDGES Project Examples

the queue. Various thresholds should be experimented
with queue snapshots visualized.

• Binary Search Tree. This project continued to use
the earthquake Tweet data, but inserted the records
(quake magnitude as the search key) into a binary
search tree, followed by visualization of the tree struc-
ture. Tasks on the search tree included (a) modify-
ing the insertion algorithm to display insertion path,
(b) implement the find algorithm and demonstrate (vi-
sually) searching for a quake of a particular magni-
tude. Fig. 4b illustrates the binary search tree sorted
by earthquake magnitudes.

• Graph (Bacon Number Computation). This project
involved building a graph using a reduced version of
the IMDB dataset and implementing the Breadth First
Search algorithm on a graph to compute the Bacon
Number of an actor in an actor-movie graph[14]. The
project used a curated IMDB dataset containing 1815
actor-movie pairs. Tasks involved building the actor-
movie graph, determining the Bacon Number of any
actor in the graph, and highlighting the path from the
queried actor to the Kevin Bacon node. Fig. 4c illus-
trates the actor-movie graph and the path from the
actor Denzel Washington to Kevin Bacon.

2.3.2 Spring 2015
Four BRIDGES projects were assigned in the course:

• Singly Linked List. The IMDB actor-movie dataset
was used in this project. Students had to read in the
dataset and build a sorted linked list of the unique
set of actors; the data field of each node would contain
the list of movies corresponding to the actor. Tasks in-
cluded finding a specific actor, followed by highlighting
the node (if found), adding in new actor-movie pairs
and removing an actor. Fig. 4a illustrates the singly
linked list sorted by actor names.

• Stacks: Expression Evaluation. This project re-
quired students to build a linked list-based stack using
BRIDGES elements. The stack was then used to eval-
uate expressions. Bridges visualizations were used to
display the contents of the stack after each operation.

• Binary Search Tree. This project was similar to
the project from the fall 2014 with slight changes in
the required tasks.

• Graph (Bacon Number Computation). Identical
to the Fall 2014 graph project.

3. EVALUATION
We have used BRIDGES in one section of our Data Struc-

tures course (ITCS 2214) for the past 2 semesters; the projects
that used BRIDGES are described in Sections 2.3.1,2.3.2.
The enrollment in each of these 2 sections was capped at
55; the enrollment stabilized at 36 in the Fall 2014 semester
and 32 in the Spring 2015 semester. Each BRIDGES project
was followed by a project survey with 15 questions relating
to the concepts learned in the assignment, the required pro-
gramming knowledge relative to their own experience, time
required for completion of assignment, sources of support

Table 1: Responses to “The assignment was relevant to my
career goals” for assignments 1-4.

#Resp SA% A% N% D% SD%

Fall 1 29 0.0 48.2 20.7 31.0 0.0
2014 2 28 17.9 28.6 28.6 17.9 7.1

3 19 15.8 52.6 15.8 10.5 5.3
Spring 1 27 14.8 14.8 55.6 7.4 7.4
2015 2 24 29.1 37.5 29.1 4.1 0.0

3 27 25.9 37.0 29.6 3.7 3.7
4 28 35.7 25.0 25.0 7.1 7.1

Table 2: Responses to “The assignment was trivial and not
essential to learning about computing.” for assignments 1-4.

#Resp SA% A% N% D% SD%

Fall 1 29 3.5 17.2 24.1 44.8 10.3
2014 2 28 3.6 10.7 17.9 60.7 7.1

3 19 5.3 10.5 15.7 42.1 26.3
Spring 1 27 7.4 11.1 25.9 40.7 14.8
2015 2 24 0 0 25.0 41.6 33.3

3 27 7.4 0.0 14.8 44.4 33.3
4 28 10.7 3.6 25.0 21.4 39.2

(mentors, TAs, external sources), relevance of the assign-
ment to career goals, difficulty of the assignment, and degree
to which the assignment increased their interest in comput-
ing. Responses used a 5 point Likert scale, ranging from
strongly agree to strongly disagree. Tables 1,2, and 3 detail
the responses to the survey questions, (1) “The assignment
was relevant to my career goals”, (2) “The assignment was
trivial and not essential to learning about computing.”, and
(3) “The assignment increased my interest in computing”.

• “The assignment was relevant to my career goals”. In
the fall 2014 surveys (Table 1), a majority of students
agreed on this question, on all 3 projects (48% vs. 31%,
46% vs. 25%, 68% vs. 16%) with the remainder being
neutral. In the spring semester, the results were even
stronger (29% vs. 14%, 66% vs. 4%, 63% vs. 7%, 61%
vs. 14%), except for the first project where there were
a large number of neutral responses (55%). This was a
more difficult project that should have been assigned in
multiple parts; the subsequent projects were corrected,
so that students found the tasks more manageable.

• “The assignment was trivial and not essential to learn-
ing about computing”. In the fall 2014 surveys (Ta-
ble 2), a majority of students disagreed (55% vs. 38%,
68% vs. 14%, 68% vs. 26%) for all projects and in the

Table 3: Responses to “The assignment increased my inter-
est in computing” for assignments 1-4.

#Resp SA% A% N% D% SD%

Fall 1 29 0.0 20.7 44.8 24.1 10.3
2014 2 28 10.7 25 32.1 21.4 10.7

3 19 5.3 42.1 31.6 15.8 5.3
Spring 1 27 3.7 22.2 40.7 14.8 18.5
2015 2 24 20.8 45.8 25.0 8.3 0.0

3 27 14.8 48.2 25.9 7.4 3.7
4 28 21.4 32.1 21.4 17.9 7.1

(a) Fall 2014 (b) Spring 2015

Figure 5: Knowledge Gains using BRIDGES

spring surveys the results were even stronger (55% vs.
18%, 75% vs. 0%, 77% vs. 7%, 61% vs. 14%).

• “The assignment increased my interest in computing”.
In the fall 2014 surveys (Table 3), the results were
mixed, with a minority agreeing on project 1 (21% vs.
34%), slight majority on project 2 (35% vs. 32%), and
a majority on project 3 (47% vs. 24%). In the spring
2015 surveys, a minority agreed on project 1 (26% vs.
33%), a majority agreed on the remaining 3 projects
(66% vs. 8%, 63% vs. 11%, 53% vs. 25%). As men-
tioned earlier, project 1 was not modularly designed to
help students to complete subtasks as part of the larger
assignment, resulting in frustration for many students.

Finally, there was a major version change in BRIDGES
between the two semesters. Version 2 of BRIDGES was
much more robust, with an improved API (Fig. 3) that was
easier to use; additionally, the documentation and tutori-
als were also vastly improved. Thus, the improvements in
student responses across the two semesters were within our
expectations.
Knowledge Gains. We also evaluated the knowledge gains
of students using BRIDGES compared to students in the
remaining sections of data structures. For this we created a
knowledge test in data structures with contributions from all
instructors teaching the course. A question bank of about
105 multiple choice questions and 38 short answer questions
was created. An external project evaluator chose a subset
of these questions (35 multiple choice and 6 short answers)
to be used for pre/post tests, administered at the beginning
and end of the semester. Students from four sections of
the fall 2014 data structures course and 4 sections of the
Spring 2015 underwent the the knowledge test; 1 section
used BRIDGES and the other 3 did not.

Fig. 5 illustrates the knowledge gains using the pre-post
scores from the knowledge test. The box plot in Fig. 5 shows
knowledge gains from pre-test to post-test, with significant
gains for both the BRIDGES section and the control group.
It is apparent that the BRIDGES group showed larger gains
(M = 39.12, SD = 14.6) than the control group (M = 22. 00,
SD = 13.28), t (93) = 5.33, p <.001. However, each section
was taught by a different instructor. As such, the differences
in knowledge gains for the groups could be explained at least
partially by the differences in instructor emphasis on the
knowledge tests; the BRIDGES instructor used part of the
knowledge test for the final exam while the other instructors
used it as a classroom exercise that did not count toward the
final grade. Therefore, it is not possible to definitively pin-
point BRIDGES as a reason for increased knowledge gains.

4. RELATED WORK
Closely related to our work are the approaches in Buck-

ley et al.’s Socially Relevant Computing [6] and Bart et al.’s
RealTime Web[2]; Buckley’s work incorporates real world
scientific applications into both their introductory and se-
nior capstone courses to make them more interesting and
relevant. Bart’s RealTime Web provides a set of flexible
client libraries to request, parse and return real-time data
from a number of web sources (Yelp, weather reports, Yahoo
Finance, etc.) Our approach goes even further to make the
course material relevant; in addiiton to providing easy access
to real-world datasets, we provide instantaneous visualiza-
tions of the data structures that are built by the students
themselves that can help to improve the understanding of
the data structure and the algorithms that operate on them.

Visualizations have long been promoted as a way to im-
prove student understanding of data structures and algo-
rithms [1, 12, 5], and the research literature highlighting
the ability of interactive visualizations to enhance discovery
is vast. Previous efforts to increase engagement have shown
promise for the use of visual programming (e.g., Scratch and
Alice) [13, 10] for making the first programming steps eas-
ier and more engaging. In addition to providing a graphical
interface for piecing together programs, these systems let
students build graphically interesting programs and encour-
age them to explore, experiment, and play. Formal evalu-
ations of Alice[11] have shown increased performance and
retention in the programing courses and improved attitudes
toward computing, especially for at-risk students.

5. CONCLUSIONS
We have presented BRIDGES, a system that provides

students with an easy-to-use API for accessing real-world
datasets for use in data structures course projects and the
ability to explore interactive visualizations of the data struc-
tures that are created as part of a BRIDGES-enabled assign-
ment. Rather than look at (uninteresting) textual output
of data structures assignments for verification/debugging,
students can use BRIDGES to interact with visualizations
of the execution of their assignments on real-world data,
with the added ability to share their visualizations with
peers, friends, and family. Early results of using BRIDGES
over 2 semesters in 1 section of our data structures course
are promising, with students reporting increased interest in
computing after completing assignments.

Currently, we are extending BRIDGES on 3 fronts:

• External Data Sources. Ultimately, we expect that
BRIDGES will provide access to large variety of in-
teresting external data sources. We also hope to inte-
grate the rich work of RealTime Web[2] to complement
BRIDGES.

• Peer Mentoring. An important component of this
project is to build strong connections within the major
through peer mentoring, using BRIDGES as a shared
interest; specifically, we plan to pair students in data
structures courses with the students in the senior-level
software development capstone course who are tackling
software development projects to extend BRIDGES.

• Extended Evaluation. BRIDGES is open source
and is available at http://bridgesuncc.github.io/.
Java and C++ versions are available for deployment by

instructors. As more instructors adopt BRIDGES, we
plan to perform a larger scale evaluation that measures
computing attitudes and engagement in data struc-
tures and algorithms courses across institutions.

6. ACKNOWLEDGMENTS
This work was supported by a grant from the National

Science Foundation, DUE-1245841.

7. REFERENCES
[1] R. Baecker. Sorting out sorting: A case study of

software visualization for teaching computer science.
Software visualization: Programming as a multimedia
experience, 1:369–381, 1998.

[2] A. C. Bart, E. Tilevich, S. Hall, T. Allevato, and
C. A. Shaffer. Transforming introductory computer
science projects via real-time web data. In Proc. of the
45th ACM Technical Symposium on Computer Science
Education, pages 289–294, 2014.

[3] M. Bostock, V. Ogievetsky, and J. Heer. D3:
Data-driven documents. IEEE Trans. Visualization &
Comp. Graphics, 2011.

[4] J. D. Bransford, A. L. Brown, and R. R. Cocking.
How people learn: Brain, mind, experience and school.
National Academy Press, 1999.

[5] M. H. Brown and R. Sedgewick. A system for
algorithm animation, volume 18. ACM, 1984.

[6] M. Buckley, J. Nordlinger, and D. Subramanian.
Socially relevant computing. In Proc. of the 39th
SIGCSE Technical Symposium on Computer Science
Education, pages 347–351, 2008.

[7] J. Cohoon. Just get over it or just get on with it. In
Women and Information Technology: Research on
Under-Representation. MIT Press, 2005.

[8] J. Cohoon and L.-Y. Chen. Migrating out of computer
science. Computing Research News, 15(2), 2003.
http://archive.cra.org/CRN/articles/march03/cohoon.chen.html.

[9] Computing Research Association. CRA Taulbee
Survey 2010-2011, 2010-2011.

[10] W. P. Dann, S. Cooper, and R. Pausch. Learning to
Program with Alice. Prentice Hall, 2005.

[11] B. Moskal, D. Lurie, and S. Cooper. Evaluating the
effectiveness of a new instructional approach. In Proc.
of the 35th SIGCSE Technical Symposium on
Computer Science Education, pages 75–79, 2004.

[12] W. C. Pierson and S. H. Rodger. Web-based animation
of data structures using jawaa. In ACM SIGCSE
Bulletin, volume 30, pages 267–271. ACM, 1998.

[13] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai.
Scratch: programming for all. Communications of the
ACM, 52(11):60–67, 2009.

[14] R. Sedgewick and K. Wayne. Introduction to
Programming in Java. A Case Study: Small World
Phenomenon
(http://introcs.cs.princeton.edu/java/home/).

[15] C. Shaffer. Data Structures and Algorithm Analysis in
C++. Dover Publications, 2011.

[16] C. Shaffer. Data Structures and Algorithm Analysis in
Java. Dover Publications, 2011.

