
Shakespearean	Words
Goals
The	purpose	of	this	assignment	is	to	learn	to

1.	 Access	Shakespeare's	work	with	BRIDGES
2.	 Write	a	Dictionary	using	BRIDGES
3.	 Write	your	own	tree	based	data	structure:	A	Binary	Min-Heap

You	will	generate	a	visualization	that	looks	like	that!

Purpose
The	purpose	of	the	assignment	is	to	analyze	out	of	Shakespeare	works	which	words	are	used	most	often.
The	assignment	is	in	two	pieces.	First,	we	will	need	to	count	how	many	times	each	words	appear.	This	will
be	accomplished	using	a	Dictionary	implemented	as	a	Binary	Search	Tree.	Then,	we	will	extract	the	words
used	most	often.	This	will	be	accomplished	using	a	Min	Heap.

Programming	part
Counting	word	appearances	using	a	Dictionary	and	a	custom	implementation

A	Dictionary	(sometimes	called	associative	arrays)	enable	to	store	and	retrieve	(key,	value)	pairs.	In	this
assignment	they	will	be	useful	to	count	how	many	times	a	particular	word	appear	in	Shakespeare's	work.
The	keys	are	going	to	be	words.	And	the	value	associated	with	that	key	is	going	to	be	how	many	times	that
word	appears.	Counting	the	words	then	becomes:

Dictionary	d

for	each	word	w	in	document
		entry	=	d.get(w)
		if	(entry	is	NULL)
				d.insert	(w,	1)
		else
				entry.value	+=	1

Getting	Started

1.	 Open	your	scaffolded	code.
2.	 Plug	in	your	credentials.
3.	 Observe	the	Dictionary	interface.

Tasks

1.	 Use	the	Dictionary	implementation	to	compute	the	number	of	occurencecs	of	each	word.
2.	 Implement	you	own	Dictionary	using	a	Binary	Search	Tree	leveraging	the	BSTElement	of	BRIDGES.
3.	 Visualize	the	Dictionary	using	BRIDGES.

If	you	have	time

1.	 Implement	the	Dictionary	using	a	HashTable.
2.	 Use	BRIDGES	SymbolCollection	to	generate	a	visualization	of	the	HashTable.
3.	 Use	all	of	Shakespeare	work	and	measure	the	performance	difference	between	the	HashTable	and

the	BST	implementations.

Extracting	the	most	frequent	words	using	a	Min	Heap

The	purpose	of	this	task	is	to	build	a	MinHeap	in	BRIDGES	represented	as	a	binary	tree	(as	opposed	to	the

http://bridges-cs.herokuapp.com/assignments/8/bridges_workshop


more	common	array	representation	of	a	heap)

Recall	that	as	a	binary	tree,	a	heap	defined	recursively	as	a	root	and	two	subheaps.	The	invariant	of	a	min
heap	is	that	the	root	of	any	heap	should	have	a	lower	(or	equal)	key	than	any	node	contained	in	the	heap.

Getting	Started

1.	 Observe	the	MyHeapElement	class	that	extends	BRIDGES's	BinTreeElement.
2.	 Observe	the	MyHeap	class	that	provide	Min	Heap	features.

Build	a	Binary	Min	Heap

1.	 Write	the	insert	function	in	MyHeap.

The	algorithm	for	inserting	in	a	heap	is	as	follows.	(This	algorithm	ignores	that	there	is	a	key	and	a	value.)
Note	that	it	uses	information	about	the	size	of	the	subheaps	being	stored	at	each	node	of	the	heap.

Heap	{
		Key
		HeapLeft
		SizeHeapLeft
		HeapRight
		SizeHeapRight
}

insert	(Heap	h,	k)	{
		if	(h	is	empty)
				return	makenewheap	(k)

		if	(k	<	h.Key)
				swap	k	and	h.Key

		if	(SizeHeapLeft	<	SizeHeapRight)
				//push	left
				SizeHeapLeft	=	SizeHeapLeft	+	1
				HeapLeft	=	insert	(h.HeapLeft,	k)
		else
				//push	right
				SizeHeapRight	=	SizeHeapRight	+	1
				HeapRight	=	insert	(h.HeapRight,	k)

		return	h
}

2.	 Write	a	pop	function	that	return	the	element	with	the	lowest	key.

3.	 Use	the	heap	to	identify	the	most	occuring	words	in	Shakespeare	work.

If	you	have	time

1.	 Use	all	of	Shakespeare's	works.

2.	 Using	the	pop	function,	keep	only	the	100	most	occuring	words	in	the	heap	at	any	time.

3.	 Measure	the	performance	difference	between	keeping	all	entries	in	the	heap	and	only	the	top-100
most	occuring	words.

4.	 Style	the	heap	so	that	words	with	more	than	1000	occurences	are	highlighted.

Help

for	Java

Color	documentation

http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_color.html


BinTreeElement	documentation

Shakespeare	documentation

Bridges	class	documentation

for	C++

Color	documentation

BinTreeElement	documentation

DataSource	documentation

Shakespeare	documentation

For	Python

Bridges	documentation

Color	documentation

BinTreeElement	documentation

http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1base_1_1_bin_tree_element.html
http://bridgesuncc.github.io/doc/java-api/current/html/classbridges_1_1data__src__dependent_1_1_shakespeare.html
http://bridgesuncc.github.io/doc/java-api/current/html/namespacebridges_1_1base.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1datastructure_1_1_color.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1datastructure_1_1_bin_tree_element.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1_data_source.html
http://bridgesuncc.github.io/doc/cxx-api/current/html/classbridges_1_1dataset_1_1_shakespeare.html
http://bridgesuncc.github.io/doc/python-api/current/html/classbridges_1_1bridges_1_1_bridges.html
http://bridgesuncc.github.io/doc/python-api/current/html/classbridges_1_1color_1_1_color.html
http://bridgesuncc.github.io/doc/python-api/current/html/classbridges_1_1bin__tree__element_1_1_bin_tree_element.html

