Modern Course Design and CS Materials

Kalpathi Subramanian, Erik Saule
krs@uncc.edu, esaule@Quncc.edu

The University of North Carolina at Charlotte

BRIDGES Summer Workshop 2022

Table of Contents

High Level Picture

Structured in Module A Variety of Content

Content is grouped themes @ Lectures
Dependencies between modules o Videos
@ Catch up modules @ In-class activities
@ Mandatory Modules @ Assignments
@ Optional Modules) o Exam
@ Projects
(Goals X
o Topics Accreditation
@ Course Learning Outcomes e SACS
@ Program Learning Outcomes o ABET
o Competencies @ Quality Matters
o Pedagogical Strategies | @ insert your accreditation body here

What is Alignment?

Properties of how content flow in

@ Program

@ Course
@ Module
(]

Materials

v

That could apply to

o Topics

@ Outcomes

o Competencies

That could be in term of
@ What they cover

@ What they assume students know

Aligning Modules with Course Objectives

Courses usually have objectives that come from program descriptions and assessments.

How do we ensure that the content of the class actually serve these higher objective? We want
to align the objective modules with the objective of the course.

Two main properties to check:

@ Are all the course objectives covered appropriately by a module objective?

@ Are there module objectives that serve no course objective?

Alignment within Module

Typical module structure

@ Exposition to new concept (lecture, textbook)

o Clarification of concept (discussion, hands-on activity)
@ Reinforcement of concept (problem, programming assignment)
v

Properties you want

@ The clarification should not introduce new concepts

The reinforcement should strengthen the exposition and clarification topics

The materials should cover the topics the module is meant to cover

The materials should not wander too far from the module objectives

v
Exam should never introduced new concepts

Plan for ITCS 6114: Algorithms and Data
Structures

Overreaching Learning Outcomes

OLOL. Articulate that design, complexity, and correctness of algorithms and data structures matter in the real
world

OLO2. Design correct and low complexity algorithms and data structures by employing standard techniques
OLO3. Analyze and implement given algorithms and data structures
OLO4. Recognize faulty algorithmic logic

Detailed Learning Outcomes

On Complexity

DLOCI. Interpret complexity notation and their on the of
algorithms (OLO1, OLO2)

DLOC2. Articulate the real-world implication of the design of algorithms and data structures in term of
performance (OLO1)

DLOCS. Derive the complexity of algorithms using various techniques (for instance, master theorem, amortized
analysis, and average case analysis) (OLO1, OLO2, OLO3, OLO4)

DLOCA. Prove the NP-Completeness of classic problems (OLO2, OLO4)

DLOCS. Leverage the P 1= NP conjecture to recognize dubious algorithmic claims (OLO4)
On Correctness

DLOCo1. Recognize and prove the invariant of data structures and algorithms (OLO2, OLO4)
On Data Structures

DLODI. Design, analyze, and implement tree-based indexes (OLO2, OLO3)

DLOD2. Design, analyze, and implement hash-based indexes (OLO2, OLO3)

DLOD3. Design, analyze, and implement classic algorithms on graphs (OLO2, OLO3)

On Algorithmic Techniques

DLOAL. Create, analyze, and implement divide and conquer algorithms (OLO2, OLO3)
DLOAZ. Create, analyze, and implement greedy algorithms (OLO2, OLO3)

DLOA3. Create, analyze, and implement dynamic programming algorithms (OLO2, OLO3)

Week 1. Sep 8.
Lecture:

1. Introduction.
2. Complexity notations [DLOC1].

Activity:

1. Proving simple complexity notation properties [DLOC1].
2. Interpreting complexity notation in term of practical cost or feasibility [DLOC1, DLOC2].

Week 2. Sep 15.
Lecture:
1. Analyzing simple algorithms [DLOC3].
2. Invariant and correctness [DLOCo1].
3. Simple recursive complexity formulas [DLOC3].
Activity:
1. Given simple algorithms (binary search, insertion sort, simple nearest neighboor), prove their correctness

and complexity [DLOCo1, DLOC3].
2. Implement and benchmark insertion sort and simple nearest neighboor [DLOC1, DLOC2].

Week 3. Sep 22.
Lecture:
1. Divide and Conquer [DLOA1].
2. Merge sort [DLOAL, DLOCo1].
3. Master Theorem [DLOC3]
Activity:

1. Solve some other problem using D&C [DLOA1]
2. Implement and benchmark Merge Sort [DLOC2].

Week 4. Sep 29.
Lecture:

1. Tree-based indexing [DLOD1]

2. Invariant of data structure [DLOCo1].

3. Using BST for associative array [DLOD1, DLOC2].
Activity:

1. Run BST manually on toy example [DLOD1].
2. Design, analyze, and implement a tree base index for nearest neighbor query [DLOD1, DLOC2].

Week 5. Oct 6.

Lecture:

Curriculum Guidelines

What are they?

Usually they are recommendation of what should/could be taught across a program.
Expressed in term of topics, learning outcome, and competencies. Not in term of courses.
Usually make recommendation on how much one should learn in a particular topic, sometimes
specified in number of hours.

How can we use them?

Give us a reference of what we should/could be teaching.
Am | covering all that? Should 1?7 Why not?
Give us a common language to communicate between instructors.

General Guidelines: ACM/IEEE CS 2013

o so | ofs18 || » ©s2013_web_final.pdf 293% v Q= - o x
St ructu red n AL. Algorithms and Complexity (19 Core-Tier1 hours, 9 Core-Tier2 hours)
57 Core-Tier1 Core-Tier2 Includes
Electives
@ Knowledge Area —
— Py : . "
. AL/Algorithmic Strategies 5 1 N
o Knowledge Unit Py ——T ——E— . ;
. - ‘AL/Basic Automata, Computability and 3 3 N
Topics and Learning Outcomes are =
/AL/Advanced Computational Complexity Y
Py w——— v

Computability

classified as

. ‘Analysi
o Tier-1 =
AL/Basic Analysis

o T er- 2 [2 Core-Tier1 hours, 2 Core-Tier2 hours]

Topics:

@ Elective

Other general guidelines: @

@ Data Science

@ Computer Engineering
@ Upcoming revised CS =

Specific Guidelines:

Structured in domains:
@ Programming
@ Algorithm
@ Architecture

More descriptive.
Bloom levels.
Other specific guidelines

NSF/IEEE-TCPP PDC 2012

. graphics, security

A Lingua Franca

CS Guidelines give us a fairly detailed description of what is in CS.
We can use them as ontologies to describe in a common language what a course of a class
material is like.

What do you think is in a lecture entitled UNCC-ITCS-2214-Saule-Graphs?

@ Depth- and breadth-first traversals

Representations of graphs (e.g., adjacency list, adjacency matrix)

Reflexivity, symmetry, transitivity

Illustrate by example the basic terminology of graph theory, and some of the properties and special cases of each type of graph/tree.
Undirected graphs

Directed graphs

Weighted graphs

Iterative and recursive traversal of data structures

Table of Contents

€S Materials — Mozila Firefox

Cs Materials
<« (¢} Ry 1'tps://cs-materials. herokuapp.com £ NS)

CS MATERIALS TUTORIALS VIEW SELECTED MATERIALS REGISTER LOGIN

Analyzing CS Mateﬂals

Material Views
Create, Analyze and Search for computer science materials that are classified against the
Select Materials ACM and PDC guidelines.

Select Collections

Radial View ACM-CSC 2013

- June 18, 2020
Radial View PDC 2012 ‘ ' - ‘zil

Harmonization View KR Subramanian Debzani Deb Yuting Chen

Comparison
Select Comparison
Radial Comparison View

Using CS Materials to improve adoption of Parallel and
Distributed Compu’” > ontent in Early CS Courses.

Erik Saule®, Kalpathi Subramanian®, and Jamie Payton™

UNC Charlotte
+Temple University
esauleGuncc. edu

Webinar: June 18th, 2020

€S Materials — Mozila Firefox

CS Materials
<« (¢] o] cs-materials.herokuapp.com () % 6 & o

CS MATERIALS TUTORIALS VIEW SELECTED MATERIALS (@ESAULEQUNCC.EDU

Analyzing CS Mateﬂals

Material Views
Create, Analyze and Search for computer science materials that are classified against the
Select Materials ACM and PDC guidelines.

Select Collections

Radial View ACM-CSC 2013
- June 18, 2020

Radial View PDC 2012 l_ | B i‘il

Harmonization View KR Subramanian Debzani Deb Yuting Chen

Comparison

Select Comparison

Using CS Materials to improve adoption of Parallel and
Distributed Compu’” > ontent in Early CS Courses.

Authoring
Create Materials
Create Collections Erik Saule*, Kalpathi Subramanian®, and Jamie Payton™

View My Materials UNC Charlotte
+Temple University
esauleGuncc. edu

ar: June 18th, 2020

€S Materials — Mozila Firefox

Cs Materials

<« @ cs-materials.herokuapp.com, L 12 6 & o

CS MATERIALS TUTORIALS VIEW SELECTED MATERIALS (@ESAULEQUNCC.EDU

Material Form

% Material Views B SAVE

Select Materials 1 MetaData @ TeoFieiis @ Ciassification
Select Collections

Radial View ACM-CSC 2013

Radial View PDC 2012

Harmonization View
Assignment

Comparison
Materlal Visibilty

Select Comparison Public

Radial Comparison View
Upstream URL

Authoring
Create Materials Description

™3 Create Collections

View My Materials

€S Materials — Mozila Firefox

Cs Materials

& (¢} cs-materials.herokuapp.com

< ACMCSC 2013 Q search, B SAVE

~ [0 Root:ACM/IEEE Curriculum Guidelines for Undergraduate Degree Programs in Computer Science VIEW SELECTED TAGS
~ [0 Knowledge Area::Algorithms and Complexity
[Knowledge Unit::Basic Analysis
[Knowledge Unit::Advanced Data Structures Algorithms and Analysis
[J Knowledge Unit::Algorithmic Strategies
[Knowledge Unit:Fundamental Data Structures and Algorithms.
Learning Outcome:Implement basic numerical algorithms.
Learning Outcome::Implement simple search algorithms and explain the differences in their time complexities.
Leaming Outcome::Be able to implement common quadratic and O(N log N) sorting algorithms
Learning Outcome::Describe the implementation of hash tables, including collision avoidance and resolution.

Learning Outcome::Discuss the runtime and memory efficiency of principal algorithms for sorting, searching, and hashing

Learning Outcome: Discuss factors other than computational efficiency that influence the choice of algorithms, such as and the use of appl pecific patterns in the input data.
Learning Outcome:Explain how tree balance affects the efficiency of various binary search tree operations.

Learning O problems using graph algorithms, including depth-first and breadith-first search

Learning Outcome::Demonstrate the ability to evaluate algorithms, to select from a range of possible options, to provide justification for that selection, and to implement the algorithm in a particular context.
Learning Outcome::Describe the heap property and the use of heaps as an implementation of priority queues.

Learning Outcome::Solve problems using graph algorithms, including single-source and all-pairs shortest paths, and at least one minimum spanning tree algorithm.

Leaming Outcome::Trace and/or implement a string-matching algorithm.

Topic:Graphs and graph algorithms (Tier 2)

a
a
a
a
a
[m]
(]
a
[m]
[m]
a
a
a
a

Topic:Heaps

Study of Coverage

We can easily understand what one course is covering.

We can understand across multiple offfering of the same course what that particular course is
about.

We can identify different “flavors” of that course.

Have you ever searched for materials?

Let's look at Nifty Assignments

Metadata
Nifty Assignments Summary
The Nifty Assignments session at the annual SIGCSE meeting is all about gathering Topics

and distributing great assignment ideas and their materials. For each assignment, the
web pages linked below describe the assignment and provides materials ~ handouts, TANFORD Audience
starter code, and so on. COMPUTER SCIENCE

Applying for Nifty is now done as its own track with a similar deadline to special sessions. The format and
content of the zip you submit is unchanged. See the info page for ideas about what makes a nifty assignment
and how to apply for the Nifty session.

Please email any or to the nifty-admin email: nifty i tanford.edu
Nick's Home

Nifty Assignments 2021

Difficult

Sankey Diagrams - Ben Stephenson ~ CS1 Sankey diagram - neat data visualization algorithm v
Rocket Landing Simulator - Adrian A. : . .
S Froiias and Troy Weingart Cs1 Rocket Landing Simulator - fun algorithm
Covid Simulator - Steve Bitner CS1-CS2 Covid 2D infection simulator - timely if scary
Linked List Labyrinth - Keith Schwarz CS2 Neat memory / debugger skill exercise, custom per student strengths
Nifty Assignments 2020
Thanks to our presenters for getting everything together including videos for this COVID-interrupted year.
Typing Test - John DeNero et al est Sill in algorithm of fun typing-speed test. (Video) (intentionally

CS1 or later: Students are given a data file, but no description about
Color My World - Carl Albing what it represents. Can they solve the mystery by generating a

reasonable image?

. captivating!

Bar Chart Racer - Kevin Wayne ?\f.il e real data to make a animated bar chart - captivating!
DNA - Brian Yu, David J. Malan Cs1 or CS2 Neat DNA project. (Video),
Recursion to the Rescue - Keith))) - .
Recursion fo the Rescue Nifty recursion projects using tied to real-world applications. (Video)
Schwarz &4 proy 9 PP s) Weaknesses
Decision Makers - Evan Peck Two hour exercise illuminating algorithms and life
Nifty Assignments 2019
Nifty Post It - Jeffrey L. Popyack €S0-CS1 Hands On Manipulative
Hawaiin Phonetic Generator - Kendall CS1 Fun Text
Bingham

P

Nanandanriae

Students develop a program to map raw data files into a colorful images.
visualization, big data, image processing - color maps.

Use as an early assignment in an HPC class, Scientific Programming class, Data
Science/Analysis class, or a Graphics/Image processing class.

Appropriate for CS1 or higher students familar with loops, file io, argument
parsing, and image processing.

The starter code is written in Python.

This assignment is appropriate for various levels, depending on the initial
conditions: starter code (or not), existing color maps (or not) and time alloted. A
late-semester CS1 class given the starter code and a week.

 Solving the mystery of what the image "looks" like

* Working with real-world data to get visual, graphical feedback.

® Allows for some artistic flair resulting in variations among solutions

* Depending on the assignment write up there are open ended options
including:

o creating different colormaps for different images;

© scaling the data to fit a given image size;

© a"smarter" program to deduce the image size from the data file;

o statistical analysis of the data to drive the choice of color map values

* When creating a colormap from scratch it can be tricky to get color
assignments that are both visually pleasing (artistic) and pull out the desired
details, though that is part of the point of this assignment.

® Use of graphics makes unit testing more challenging.

Curriculum Guidelines as Features

The problem in classic search is that it is hard to find good matches because people use
imprecise textual descriptions.
Curriculum guidelines give us a well established precise features

Give a set of materials that use these topics/outcomes

Recommendation

Give a set of materials that match the same outcomes as these ones.

Table of Contents

Activities

Upload your materials in google drive
@ Structure them in modules

Classify Module 1 in CS Materials

@ Create a CS Materials account
o Create a material for your first module

o Title it with your name, your class name, and the module number and name
o Classify against ACM CS 2013
o (You may want to save often)

