Real-World Problems, Data and Visualizations Using BRIDGES

Kalpathi Subramanian1, Erik Saule1, and Jamie Payton2
krs@uncc.edu, esaule@uncc.edu, payton@temple.edu

1The University of North Carolina at Charlotte
2Temple University

CCSC-SE January, 2022
Agenda

- Introduction [20 min]
 - Participant introductions
 - What is BRIDGES and how does it help?
- A First Example [15 min]
- A Tour of BRIDGES [20 min]
- Break [5min]
- Discussions [25 min]
- Workshop Survey, Opportunity to Participate [5 min]
Motivation

Attrition rates in early foundational courses are high (40-60%), need to improve student engagement, and demonstrate the potential of Computer Science to incoming freshmen/sophomore students.

BRIDGES’ approach

- Bring real-world datasets into the classroom.
- Visualizations of student generated data structures, interactions, algorithm performance/complexity.
- Student output shared (with friends, family) via web link
BRIDGES provides engaging Input and Output available for students in Python, C++, and Java.

```
main () {
    bridges <-- Create Bridges Object
    obj_list <-- Get Data(data source)
    ds <-- BuildDataStructure(obj_list)
    bridges.setDataStructure(ds)
    bridges.visualize()
}
```
What is hard in a Data Structure course?

- Debugging is hard.
- I don’t understand what the data structure looks like!
- Does any of this matter in the real world?
- Two examples below: Binary Search Tree with USGS earthquake Tweet data, Bacon Number problem with IMDB Data (BFS algorithm)

Indexing USGS Earthquake

Bacon Number [IMDB Data]
BRIDGES in Algorithms Course

What is difficult in an Algorithm class?

- Complexity is confusing!
- I am never going to use any of these crazy things.
- Why is he still talking about complexity?
- BRIDGES provides **benchmarking** features and large datasets, so as to demonstrate algorithm performance.

Sorting Benchmark

Shortest Path (OSM)

Mountain Path (DP)
BRIDGES in CS1/CS2 Courses

What is difficult in a CS1 course?

- Hello World is BOOOOOOOOORING...
- We added two arrays of integers, I am soooo impressed...

Graphical Patterns and Analysis

Games
Students in BRIDGES sections gained more knowledge.
Students in BRIDGES sections performed better in follow on core CS

Figure: Comparing long-term student achievement between students who used the BRIDGES toolkit in the Data Structures course vs. Control group. The evaluation was performed with 2 cohorts of students (Fall 14, Spring 15). Analysis performed Spring 2019.
Students using BRIDGES appreciate CS better
Thank you!

Why adopt BRIDGES?

- Well tested: over 2000+ students, 20+ institutions
- Increased engagement
- A growing set of pre-designed assignments
- Full Support from the BRIDGES team
- Stipends available for adopters

How to adopt? Contact us!

- esaule@uncc.edu
- krs@uncc.edu
- payton@temple.edu

Support

This material is based upon support from NSF DUE-1726809.
Open up your laptops and try out some of the BRIDGES examples and their outputs from a sampling of BRIDGES assignments
Discussion [15-20 min]

Possible Talking Points

- What issues do you face in teaching (early CS) courses?
- Can tools like BRIDGES be helpful? What are the hurdles?
BRIDGES Participation - Opportunity

- BRIDGES under active development - funded by an NSF IUSE grants - to disseminate BRIDGES to external users!
- Need help in adopting, contributing, and extending BRIDGES.
- Build engaging assignments and data sources that also reinforce CS rigor.
- Use BRIDGES in the classroom, collect data and provide feedback; all evaluation materials provided through online Qualtrix surveys by project evaluator.
- Stipends available for instructor; alternately TA support can be provided.
- Full technical support provided, and interaction with Bridges team/community, monthly user meetings.