Modern Course Design and CS Materials

Kalpathi Subramanian!, Erik Saule!, Jamie Payton?
krs@uncc.edu, esaule@uncc.edu, payton@temple.edu

IThe University of North Carolina at Charlotte
2Temple University

BRIDGES Workshop, June 24-26, 2024

Table of Contents

High Level Picture

Structured in Module A Variety of Content

Content is grouped themes o Lectures
Dependencies between modules o Videos
@ Catch up modules @ In-class activities
@ Mandatory Modules @ Assignments
@ Optional Modules @ Exam

@ Projects

v

© Topics
@ Course Learning Outcomes e SACS

@ Program Learning Outcomes o ABET

o Competencies @ Quality Matters

@ Pedagogical Strategies @ insert your accreditation body here

4

What is Alignment?

Properties of how content flow in

@ Program

@ Course
@ Module

@ Materials

That could apply to

o Topics

@ Outcomes

o Competencies

That could be in term of
@ What they cover

@ What they assume students know

Aligning Modules with Course Objectives

Courses usually have objectives that come from program descriptions and assessments.

How do we ensure that the content of the class actually serve these higher objective? We want
to align the objective modules with the objective of the course.

Two main properties to check:

@ Are all the course objectives covered appropriately by a module objective?

@ Are there module objectives that serve no course objective?

Alignment within Module

Typical module structure

@ Exposition to new concept (lecture, textbook, videos)

o Clarification of concept (discussion, hands-on activity)

@ Reinforcement of concept (problem, programming assignment)

Properties you want

@ The clarification should not introduce new concepts

The reinforcement should strengthen the exposition and clarification topics

The materials should cover the topics the module is meant to cover

The materials should not wander too far from the module objectives

Exam should never introduce new concepts

Plan for ITCS 6114: Algorithms and Data
Structures

Overreaching Learning Outcomes

OLOL. Articulate that design, complexity, and correctness of algorithms and data structures matter in the real
world

OLO2. Design correct and low complexity algorithms and data structures by employing standard techniques
OLO3. Analyze and implement given algorithms and data structures
OLO4. Recognize faulty algorithmic logic

Detailed Learning Outcomes

On Complexity

DLOCI. Interpret complexity notation and their on the of
algorithms (OLO1, OLO2)

DLOC2. Articulate the real-world implication of the design of algorithms and data structures in term of
performance (OLO1)

DLOCS. Derive the complexity of algorithms using various techniques (for instance, master theorem, amortized
analysis, and average case analysis) (OLO1, OLO2, OLO3, OLO4)

DLOCA. Prove the NP-Completeness of classic problems (OLO2, OLO4)

DLOCS. Leverage the P 1= NP conjecture to recognize dubious algorithmic claims (OLO4)
On Correctness

DLOCo1. Recognize and prove the invariant of data structures and algorithms (OLO2, OLO4)
On Data Structures

DLODI. Design, analyze, and implement tree-based indexes (OLO2, OLO3)

DLOD2. Design, analyze, and implement hash-based indexes (OLO2, OLO3)

DLOD3. Design, analyze, and implement classic algorithms on graphs (OLO2, OLO3)

On Algorithmic Techniques

DLOAL. Create, analyze, and implement divide and conquer algorithms (OLO2, OLO3)
DLOAZ. Create, analyze, and implement greedy algorithms (OLO2, OLO3)

DLOA3. Create, analyze, and implement dynamic programming algorithms (OLO2, OLO3)

Week 1. Sep 8.
Lecture:

1. Introduction.
2. Complexity notations [DLOC1].

Activity:

1. Proving simple complexity notation properties [DLOC1].
2. Interpreting complexity notation in term of practical cost or feasibility [DLOC1, DLOC2].

Week 2. Sep 15.
Lecture:
1. Analyzing simple algorithms [DLOC3].
2. Invariant and correctness [DLOCo1].
3. Simple recursive complexity formulas [DLOC3].
Activity:
1. Given simple algorithms (binary search, insertion sort, simple nearest neighboor), prove their correctness

and complexity [DLOCo1, DLOC3].
2. Implement and benchmark insertion sort and simple nearest neighboor [DLOC1, DLOC2].

Week 3. Sep 22.
Lecture:
1. Divide and Conquer [DLOA1].
2. Merge sort [DLOAL, DLOCo1].
3. Master Theorem [DLOC3]
Activity:

1. Solve some other problem using D&C [DLOA1]
2. Implement and benchmark Merge Sort [DLOC2].

Week 4. Sep 29.
Lecture:

1. Tree-based indexing [DLOD1]

2. Invariant of data structure [DLOCo1].

3. Using BST for associative array [DLOD1, DLOC2].
Activity:

1. Run BST manually on toy example [DLOD1].
2. Design, analyze, and implement a tree base index for nearest neighbor query [DLOD1, DLOC2].

Week 5. Oct 6.

Lecture:

Curriculum Guidelines

What are they?

Usually they are recommendation of what should/could be taught across a program.
Expressed in term of topics, learning outcome, and competencies. Not in term of courses.
Usually make recommendation on how much one should learn in a particular topic, sometimes
specified in number of hours.

How can we use them?

Give us a reference of what we should/could be teaching.
Am | covering all that? Should 1?7 Why not?
Give us a common language to communicate between instructors.

General Guidelines: ACM/IEEE CS 2013

o so | ofs18 || » ©s2013_web_final.pdf 293% v Q= - o x
St ructu red n AL. Algorithms and Complexity (19 Core-Tier1 hours, 9 Core-Tier2 hours)
57 Core-Tier1 Core-Tier2 Includes
Electives
@ Knowledge Area —
— Py : . "
. AL/Algorithmic Strategies 5 1 N
o Knowledge Unit Py ——T ——E— . ;
. - ‘AL/Basic Automata, Computability and 3 3 N
Topics and Learning Outcomes are =
/AL/Advanced Computational Complexity Y
Py w——— v

Computability

classified as

. ‘Analysi
o Tier-1 =
AL/Basic Analysis

o T er- 2 [2 Core-Tier1 hours, 2 Core-Tier2 hours]

Topics:

@ Elective

Other general guidelines: @

@ Data Science

@ Computer Engineering
@ Upcoming revised CS =

Specific Guidelines:

Structured in domains:
@ Programming
@ Algorithm
@ Architecture

More descriptive.
Bloom levels.
Other specific guidelines

NSF/IEEE-TCPP PDC 2012

. graphics, security

A Lingua Franca

CS Guidelines give us a fairly detailed description of what is in CS.
We can use them as ontologies to describe in a common language what a course of a class
material is like.

What do you think is in a lecture entitled UNCC-ITCS-2214-Saule-Graphs?

@ Depth- and breadth-first traversals

Representations of graphs (e.g., adjacency list, adjacency matrix)

Reflexivity, symmetry, transitivity

Illustrate by example the basic terminology of graph theory, and some of the properties and special cases of each type of graph/tree.
Undirected graphs

Directed graphs

Weighted graphs

Iterative and recursive traversal of data structures

CS material pitch

